133 resultados para Cyclooxygenase 2 inhibitor
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
OBJETIVO: Investigar a influência do inibidor não-seletivo da ciclooxigenase, cetoprofeno (ceto) intravenoso, em alterações histológicas e dos níveis das citocinas renais - fator α de necrose tumoral (TNF- α) e interleucina 1 (IL-1) - após hemorragia de 30% da volemia (10%, três vezes, em intervalos de 10 min). MÉTODOS: Sob anestesia com sevoflurano (sevo), os grupos sevo e sevo+ceto (10 ratos cada) foram preparados cirurgicamente para leitura de pressão arterial média (PAM) e administração de solução de Ringer (5 mL/kg/h) e de cetoprofeno (1,5 mg/kg), no início da anestesia, no grupo sevo+ceto. Mediu-se temperatura retal continuamente. Os valores de temperatura e PAM foram observados antes da primeira hemorragia (T1), após a terceira hemorragia (T2) e 30 min após T2 (T3). Realizada nefrectomia bilateral nos dois grupos para análise histológica e imuno-histoquímica. RESULTADOS: Nos dois grupos, temperatura e PAM diminuíram com relação aos valores basais. Hipotermia foi mais acentuada no grupo sevo (p=0,0002). Necrose tubular foi mais frequente no grupo sevo (p=0,02). As citocinas estiveram igualmente presentes nos rins dos dois grupos. CONCLUSÃO: Cetoprofeno foi mais protetor no rim de rato durante anestesia com sevoflurano e hipovolemia, porém parece que TNF- α e IL-1 não estão envolvidas nessa proteção.
Resumo:
Paracoccidioides brasiliensis is the causative agent of paracoccidioidomycosis, the most prevalent deep mycosis in Latin America. Production of eicosanoids, including prostaglandins and leukotrienes, during fungal infections is theorized to play a critical role on fungal survival and/or growth as well as on host immune response modulation. Host cells are one source of these mediators; however another potential source may be the fungus itself. The purpose of our study was to assess whether P. brasiliensis strains with different degree of virulence (Pb18, Pb265, PbBT79, Pb192) produce both, prostaglandin E(2) (PGE(2)) and leukotriene B(4) (LTB(4)). Moreover, we asked if P. brasiliensis can use exogenous sources of arachidonic acid (AA), as well as metabolic pathways dependent on cyclooxygenase (COX) and lipoxygenase (5-LO) enzymes, for PGE(2) and LTB(4) production, respectively. Finally, a possible association between these eicosanoids and fungus viability was assessed. We demonstrated, using ELISA assays, that all P. brasiliensis strains, independently of their virulence, produce high PGE(2) and LTB(4) levels after a 4-hour culture, which were reduced after 8 hours. However, in both culture times, higher eicosanoids levels were detected when culture medium was supplemented with exogenous AA. Differently, treatment with indomethacin, a COX inhibitor, or MK886, a 5-LO inhibitor, induces a reduction on PGE(2) and LTB(4) levels, respectively, as well as in fungus viability. The data provide evidence that P. brasiliensis is able to metabolize either endogenous or exogenous AA by pathways that depend on COX and 5-LO enzymes for producing, respectively, PGE(2) and LTB(4) that are critical for its viability.
Resumo:
Paracoccidioidomycosis is a deep mycosis, endemic in Latin America, caused by Paracoccidioides brasiliensis. Macrophage activation by cytokines is the major effector mechanism against this fungus. This work aimed at a better understanding of the interaction between yeast cells-murine peritoneal macrophages and the cytokine signals required for the effective killing of high virulence yeast-form of P. brasiliensis. In addition, the killing effector mechanisms dependent on the generation of reactive oxygen or nitrogen intermediates were investigated. Cell preincubation with IFN-gamma or TNF-alpha, at adequate doses, resulted in effective yeast killing as demonstrated in short-term (4-h) assays. Both, IFN-gamma and TNF-alpha activation were associated with higher levels of H(2)O(2) and NO when compared to nonactivation. Treatment with catalase (CAT), a H(2)O(2) scavenger, and N(G)-monomethyl-L-arginine (L-NMMA), a nitric oxide synthase inhibitor, reverted the killing effect of activated cells. Taken together, these results suggest that both oxygen and L-arginine-nitric oxide pathways play a role in the killing of highly virulent P. brasiliensis.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Objective: Periodontitis is a well-appreciated example of leukocyte-mediated bone loss and inflammation with pathogenic features similar to those observed in other inflammatory diseases, such as arthritis. Since Tacrolimus, is an immunomodulatory drug used for the treatment of some cases of arthritis, we hypothesized that it may modulate periodontal disease.Design: Using a murine model of ligature-induced periodontal disease, we assessed the effects of daily administrations of Tacrolimus (1 mg/kg body weight) on bone loss, enzymatic (myeloperoxidase) analysis, differential white blood cells counts, airpouch exudate and cytokine expression for 5-30 days.Results: Radiographic, enzymatic (myeloperoxidase) and histological analysis revealed that Tacrolimus reduced the severity of periodontitis. More specifically, Tacrolimus suppressed the expression of serum interleukin (IL-1 beta), tumour necrosis factor (TNF-alpha), IL-6, airpouch exudate PGE(2) and leukocytosis usually observed after the induction of periodontitis. Tacrolimus treatment in periodontitis-induced rats conferred protection against the inflammation-induced tissue and bone loss associated with periodontitis, through a mechanism involving IL-1 beta, TNF-alpha and IL-6.Conclusions: the effects of Tacrolimus on periodontal disease pathogenesis may provide clues to a novel approach to host modulation therapy in destructive periodontal disease. (C) 2007 Elsevier Ltd. All rights reserved.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
For the first time, a non-catalytic and myotoxic Lys49-PLA(2) (BthTX-I from Bothrops jararacussu venom) has been crystallized with BPB inhibitor. X-ray diffraction data were collected and electron-density calculations showed that the ligand is bound to the His48 residue. BthTX-I with His48 chemically modified by BPB shows strongly reduced myotoxic and cytotoxic activities. This suggests a biological correlation between the modification of His48, which is associated with catalytic activity of PLA(2)s, and other toxicological activities of Lys49-PLA(2)s.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
We evaluated the effect of a leukotriene inhibitor (MK886) on nitric oxide (NO) and hydrogen peroxide (H2O2) production by peritoneal macrophages of mice subjected to acute and chronic stress. Acute stress was induced by keeping mice immobilized in a tube for 2 h. Chronic stress was induced over a 7-day period by the same method, but with increasing duration of immobilization. The effects of MK886 were investigated in-vitro after incubation with peritoneal macrophages, and in-vivo by submitting mice to stress and treating them daily with MK886. Supernatants of macrophage cultures were collected for NO determination and adherent cells were used for H2O2 determination. Macrophages from mice submitted to acute or chronic stress showed no alterations in H2O2 production. However, macrophages of acutely and chronically stressed mice showed inhibition of NO after incubation with MK886 in-vitro. Administration of MK886 to chronically stressed mice increased generation of H2O2 and inhibited production of NO. Our data suggest an important role of leukotrienes in NO synthesis, which is important in controlling replication of several infectious agents, mainly in stressed and immunosuppressed animals.