170 resultados para Crown jewels
Resumo:
The objective of the present study was to characterize ovogones, primary oocytes and preantral follicles of buffalo fetus in different ages of gestation. For this, 29 fetuses were collected from a slaughterhouse (Frigol, Brazil) and crown-rump lengths were measured to estimate the fetal age (0-3, 4-6, 7-10 months of gestation). The ovaries were removed and ovarian tissue was processed for classic histology and transmission eletron microscopy examination. The structural evaluation demonstrated that in the first period of the gestation (0-3 months) the buffalo fetus showed ovogones (in mitotic division) and in some cases, the primary oocytes surrounded by somatic cells. In the second period (4-6 months), it was verified that the preantral follicles were completely formed. In the last period (70 month to the end of gestation) the ovaries contained a large amount of preantral follicles, and in some fetuses, antral follicles were observed. The ultrastructural analysis of the ovogones, primary oocytes and preantral follicles showed that these cells have few organelles and the quantity of mitochondria, endoplasmatic reticulum and apparatus Golgi complex is increased as the germinative cells passing from one stage to another.
Resumo:
Daily ultrasound examinations were conducted from Days 10 to 60 (ovulation = Day 0) of pregnancy to monitor the conceptus in jennies (n = 12). The embryonic vesicle was first detected on Day 11.5 +/- 0.9 (mean +/- SD; range 10 to 13d) and was mobile until movement ceased (fixation) on Day 15.5 +/- 1.4 (range, 13 to 18d). The vesicle was spherical from Days 10 to 18 (mean growth rate, 3.2 mm/d), non spherical (irregular) with a reduced growth rate (0.5 mm/d) from Days 19 to 29, and then grew at a moderate rate (1.6 mm/d) up to Day 46. on average, detection of the embryo proper (consistently located on the ventral aspect of the yolk sac) and embryonic heartbeat were Days 20.7 +/- 1.2 and 23.5 +/- 1.3, respectively. Formation of the allantoic sac was first detected on Day 24.4 +/- 1.7 and was complete on Day 36.8 +/- 1.6. Descent of the fetus (and formation of the umbilical cord) began on Day 37.9 +/- 1.7 and was complete on Day 44.1 +/- 2.1. Crown-ramp length averaged 3.7, 15.4, 22.7, 37.5 and 59.6 mm on Days 20, 30, 40, 50 and 60, respectively. In general, morphologic features and dates of occurrence were similar to those reported previously in the mare. (C) 1998 by Elsevier B.V.
Resumo:
Purpose: The aim of this study was to assess the influence of cusp inclination on stress distribution in implant-supported prostheses by 3D finite element method.Materials and Methods: Three-dimensional models were created to simulate a mandibular bone section with an implant (3.75 mm diameter x 10 mm length) and crown by means of a 3D scanner and 3D CAD software. A screw-retained single crown was simulated using three cusp inclinations (10 degrees, 20 degrees, 30 degrees). The 3D models (model 10d, model 20d, and model 30d) were transferred to the finite element program NeiNastran 9.0 to generate a mesh and perform the stress analysis. An oblique load of 200 N was applied on the internal vestibular face of the metal ceramic crown.Results: The results were visualized by means of von Mises stress maps. Maximum stress concentration was located at the point of application. The implant showed higher stress values in model 30d (160.68 MPa). Cortical bone showed higher stress values in model 10d (28.23 MPa).Conclusion: Stresses on the implant and implant/abutment interface increased with increasing cusp inclination, and stresses on the cortical bone decreased with increasing cusp inclination.
Resumo:
The teeth most commonly affected by trauma are the maxillary central incisors. The most frequent types of traumatic dental injuries to permanent teeth are enamel fractures, enamel and dentine fractures, and enamel and dentine fractures with pulp involvement. This article describes three clinical cases with different levels of traumatized maxillary incisors and several cosmetic approaches for recovery of the esthetics and the masticatory function, as well as the social/psychological aspects of treatment. All cases involved young adult men. The three clinical cases involve dentin and enamel fractures, dentin and enamel fractures with pulp exposure, and dentin and enamel fractures with pulp exposure associated with root fracture. The cosmetic treatments used to resolve fractures were direct composite resin by layering technique, indirect all-ceramic restorations (laminate veneer and ceramic crowns over the teeth), and immediate implant after extraction followed by immediate loading (ceramic abutments with ceramic crown over implant). In all three cases, excellent functional and esthetic results were achieved by use of these treatment modalities. The patients were very satisfied with the results.
Resumo:
The aim of this study was to perform a photoelastic analysis of stress distribution on straight and angulated implants with different crowns (screwed and cemented). Three models were made of photoelastic resin PL-2: model 1: external hexagon implant 3.75 x 10.00 mm at 0 degrees; model 2: external hexagon implant 3.75 x 10.00 mm at 17 degrees; model 3: external hexagon implant 3.75 x 10.00 mm at 30 degrees. Axial and oblique (45 degrees) load (100 N) was applied with a universal testing machine. The photoelastic fringes on the models were recorded with a digital camera and visualized in a graphic software for qualitative analysis. The axial loading generated the same pattern of stress distribution. The highest stresses were concentrated between medium and apical thirds. The oblique loading generated a similar pattern of stress distribution in the models with similar implant angulation; the highest stress was located on the cervical region opposite to implant angulation and on the apical third. It was concluded that the higher the implant angulation, the higher the stress value, independent of crown type. The screwed prostheses exhibited the highest stress concentration. The oblique load generated higher stress value and concentration than the axial load.
Resumo:
Dental injuries are often the result of direct trauma. The most affected teeth are the upper incisors, and the most frequent lesions are coronal fractures, contusions, and lip and alveolar mucosa lacerations. The objective of this study was to draw attention to the importance of the correct management of cases of crow fractures associated with soft tissue lacerations when the fragment is not located. This is a clinical case of crown fracture, the fragment of which remained lodged inside the lip. After fragment removal, the clinical case showed a satisfactory repair emphasizing the importance of a meticulous clinical examination to achieve a correct diagnosis and an appropriate treatment plan, which is essential for a favorable prognosis.
Resumo:
Root fractures in immature teeth are rare because the resilience of the alveolar bone is more favorable to the occurrence of luxation. This article reports a case of traumatic injury in an immature permanent tooth that progressed to root fracture, having a parafunctional oral habit as the possible modifying factor of case evolution. A 12-year-old boy presented for treatment complaining of a defective restoration and mild pain on the maxillary right central incisor. The patient had a history of crown fracture in this tooth due to trauma 2 years before. The clinical examination showed healthy gingival tissues and no abnormal tooth mobility, whereas radiographic projections revealed healthy periradicular tissues, incomplete root formation, and no visible root fracture. As pulp necrosis was diagnosed, calcium hydroxide therapy was started for canal disinfection and subsequent obturation. However, after 4 weeks of treatment, a horizontal fracture line was observed radiographically in the root's middle third. The patient denied a new traumatic injury, but revealed the habit of chewing on a pencil. Refraining from the deleterious oral habit was strongly advised, and root canal filling with mineral trioxide aggregate was performed to treat the root fracture. After 4 years of follow-up, the tooth has normal function and no abnormal mobility. Images suggestive of remodeling at the apical end of the coronal segment and replacement resorption of the apical segment are seen radiographically. This case demonstrates the need of following cases of dental trauma and the possible influence of parafunctional oral habits as modifying factors of case progression.
Resumo:
\ The biologic width is an essential dental space that always needs to be maintained to ensure periodontal health in any dental prosthetic restorations. An iatrogenic partial fixed prosthesis constructed in lower posterior teeth predisposed the development of subgingival caries, which induced violation of the biologic width in involved teeth, resulting in an uncontrolled inflammatory process and periodontal tissue destruction. This clinical report describes a periodontal surgical technique to recover a violated biologic width in lower posterior teeth, by crown lengthening procedure associated with free gingival graft procedure, to ensure the possibility to place a modified partial fixed prosthesis in treated area. The procedure applied to recover the biologic width was crown lengthening with some modifications, associated with modified partial fixed prosthesis to achieve health in treated area. The modified techniques in both surgical and prosthetic procedures were applied to compensate the contraindications to recover biologic width by osteotomy in lower posterior teeth. The result, after 4 years under periodic control, seems to achieve the projected goal. Treating a dental diseased area is necessary to diagnose, eliminate, or control all etiologic factors involved in the process. When the traditional methods are not effective to recover destructed tissues, an alternative, compensatory, and adaptive procedure may be applied to restore the sequelae of the disease, applying a restorative method that respects the biology of involved tissues.
Resumo:
The aim of this study was to evaluate the effect of unilateral angular misfit of 100 Km on stress distribution of implant-supported single crowns with ceramic veneering and gold framework by three-dimensional finite element analysis. Two three-dimensional models representing a maxillary section of premolar region were constructed: group 1 (control)-crown completely adapted to the implant and group 2-crown with unilateral angular misfit of 100 Km. A vertical force of 100 N was applied on 2 centric points of the crown. The von Mises stress was used as an analysis criterion. The stress values and distribution in the main maps (204.4 MPa for group 1 and 205.0 MPa for group 2) and in the other structures (aesthetic veneering, framework, retention screw, implant, and bone tissue) were similar for both groups. The highest stress values were observed between the first and second threads of the retention screw. Considering the bone tissue, the highest stress values were exhibited in the peri-implant cortical bone. The unilateral angular misfit of 100 Km did not influence the stress distribution on the implant-supported prosthesis under static loading.
Resumo:
Purpose: This study aimed to evaluate the influence of implants with or without threads representation on the outcome of a two-dimensional finite element (FE) analysis. Materials and Methods: Two-dimensional FE models that reproduced a frontal section of edentulous mandibular posterior bone were constructed using a standard crown/implant/screw system representation. To evaluate the effect of implant threads, two models were created: a model in which the implant threads were accurately simulated (precise model) and a model in which implants with a smooth surface (press-fit implant) were used (simplified model). An evaluation was performed on ANSYS software, in which a load of 133 N was applied at a 30-degree angulation and 2 mm off-axis from the long axis of the implant on the models, The Von Mises stresses were measured. Results: The precise model (1.45 MPa) showed higher maximum stress values than the simplified model (1.2 MPa). Whereas in the cortical bone, the stress values differed by about 36% (292.95 MPa for the precise model and 401.14 MPa for the simplified model), in trabecular bone (19.35 MPa and 20.35 MPa, respectively), the stress distribution and stress values were similar. Stress concentrations occurred around the implant neck and the implant apex. Conclusions: Considering implant and cortical bone analysis, remarkable differences in stress values were found between the models. Although the models showed different absolute stress values, the stress distribution was similar. INT J ORAL MAXILLOFAC IMPLANTS 2009;24:1040-1044
Resumo:
The demand for aesthetic restorations has increased during the last years. Dental ceramics are a successful alternative for some cases because of aesthetics and biocompatibility. Therefore, the aim of this literature review was to present the factors necessary to fabricate all-ceramic restorations with aesthetics similar to natural dentition. A search of English-language peer-review literature was completed using MEDLINE database from 1975 to 2009 including the keywords "aesthetic," "metal-free crown," "all-ceramic," and "color." It was observed that several factors influence aesthetics of all-ceramic restorations. Color scale, light source during color evaluation, characteristic of core material, color of supporting tooth, presence of root post, and type of cement are clinical factors that may influence color of the restorations. Laboratorial factors as technique for ceramic condensation, thickness, temperature, and number of firing cycles also influence the result of these crowns. Although several clinical and laboratorial factors influence aesthetics of all-ceramic restorations, the aesthetic success and longevity of these restorations depend on the integration with surrounding periodontal tissue.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
In implant therapy, a peri-implant bone resorption has been noticed mainly in the first year after prosthesis insertion. This bone remodeling can sometimes jeopardize the outcome of the treatment, especially in areas in which short implants are used and also in aesthetic cases. To avoid this occurrence, the use of platform switching (PS) has been used. This study aimed to evaluate the biomechanical concept of PS with relation to stress distribution using two-dimensional finite element analysis. A regular matching diameter connection of abutment-implant (regular platform group [RPG]) and a PS connection (PS group [PSG]) were simulated by 2 two-dimensional finite element models that reproduced a 2-piece implant system with peri-implant bone tissue. A regular implant (prosthetic platform of 4.1 mm) and a wide implant (prosthetic platform of 5.0 mm) were used to represent the RPG and PSG, respectively, in which a regular prosthetic component of 4.1 mm was connected to represent the crown. A load of 100 N was applied on the models using ANSYS software. The RPG spreads the stress over a wider area in the peri-implant bone tissue (159 MPa) and the implant (1610 MPa), whereas the PSG seems to diminish the stress distribution on bone tissue (34 MPa) and implant (649 MPa). Within the limitation of the study, the PS presented better biomechanical behavior in relation to stress distribution on the implant but especially in the bone tissue (80% less). However, in the crown and retention screw, an increase in stress concentration was observed.