115 resultados para Condensed matter theory
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The magnetic properties of doped pellets of poly(3-methylthiophene) showing room temperature ferromagnetic behaviour have been discussed in a previous article. The magnetic behaviour was attributed to a weak ferromagnetic phase, due to the superexchange interaction of polarons via the dopant anions. The Dzialoshinsky-Morya interaction among canted spins was proposed to explain the ferromagnetism. In this article the main conclusions of that work concerning the magnetic behaviour are revised. The basic assumption now is that the magnetic moments are spin 1/2 polarons that can interact antiferromagnetically and/or ferromagnetically. In the small crystalline regions of the polymer, which are identified with the polymer portion that remains ferromagnetic at room temperature, the interaction gives rise to S = 0 and 1 bipolarons and the S = 1 triplet state is lower in energy. In the disordered region, disorder will prevent the complete S = 1 and 0 coupling and bands of polarons ferromagnetically and antiferromagnetically coupled will appear. Using this approach, all the magnetization data can be qualitatively explained, as well as the electron spin resonance data.
Resumo:
Phosphoniobate glasses with composition (mol%) (100-x) NaPO(3)-xNb(2)O(5) ( x varying from 11 to 33) were prepared and characterized by means of thermal analysis, Fourier transform infrared spectroscopy, Raman scattering and (31)P nuclear magnetic resonance. The addition of Nb(2)O(5) to the polyphosphate base glass leads to depolymerization of the metaphosphate structure. Different colors were observed and assigned as indicating the presence of Nb(4+) ions, as confirmed by electron paramagnetic resonance measurements. The color was observed to depend on the glass composition and melting temperature as well. Er(3+) containing samples were also prepared. Strong emission in the 1550 nm region was observed. The Er(3+4)I(15/2) emission quantum efficiency was observed to be 90% and the quenching concentration was observed to be 1.1 mol%( 1.45 x 10(20) ions cm(-3)). Planar waveguides were prepared by Na(+)-K(+)-Ag(+) ion exchange with Er(3+) containing samples. Optical parameters of the waveguides were measured at 632.8, 543.5 and 1550 nm by the prism coupling technique as a function of the ion exchange time and Ag(+) concentration. The optimized planar waveguides show a diffusion depth of 5.9 mu m and one propagating mode at 1550 nm.
Resumo:
Transparent oxyfluoride glasses and beta-PbF(2) nanocrystals containing glass-ceramics were prepared with varying Eu(3+) content (0.3, 0.4, 0.5 and 0.6%). The effect of Eu(3+) content on the preparation of glass-ceramics was investigated. From differential scanning calorimetry, the T(x)-T(g)(T(x)-temperature of the onset of crystallization; T(g)-glass transition temperature) parameter for glasses has shown slight variation, and an exothermic peak near T(g) called the ceramization temperature (T(c)) has been observed. Heat treatments were performed at this temperature to obtain transparent glass-ceramics containing beta-PbF(2) nanocrystals, identified by x-ray diffraction. Heat treatments for different periods of time were performed and were observed to be very important in the control of the crystal size and of the crystallization rate. Based upon the absorption spectra, the scattering level due to the presence of beta-PbF(2) nanocrystals in the glass-ceramics was observed to be similar to that for the mother glasses. Detailed analysis of emission spectra and decay time measurements led to the identification of Eu(3+) ions as the beta-PbF(2) crystalline phase. Excitation spectra at 70 K show the interaction of Eu(3+) ions with the fluorogermanate network.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
We report magnetic data of free standing films of poly( aniline) (PANI) protonated with a plasticizing di-ester of succinic acid. The data have been obtained using the electron spin resonance (ESR) technique at two different frequencies, X-band (9.4 GHz) and Q-band ( 34 GHz), on one hand, and by magnetization measurements in broad ranges of temperatures and magnetic fields on the other hand. All the data can be explained assuming a transition as a function of temperature from delocalized magnetic moments in the valence band to localized positive polarons in several antiferromagnetically correlated bands. By increasing the magnetic field, the magnetic properties are affected in several ways. An intra-band admixture of states occurs; it contributes to increase the spins' localization and finally promotes an antiferromagnetic-metamagnetic transition.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
We present photoluminescence and decay of photo excited conductivity data for sol-gel SnO(2) thin films doped with rare earth ions Eu(3+) and Er(3+), a material with nanoscopic crystallites. Photoluminescence spectra are obtained under excitation with several monochromatic light sources, such as Kr(+) and Ar(+) lasers, Xe lamp plus a selective monochromator with UV grating, and the fourth harmonic of a Nd: YAG laser (4.65eV), which assures band-to-band transition and energy transfer to the ion located at matrix sites, substitutional to Sn(4+). The luminescence structure is rather different depending on the location of the rare-earth doping, at lattice symmetric sites or segregated at grain boundary layer, where it is placed in asymmetric sites. The decay of photo-excited conductivity also shows different trapping rate depending on the rare-earth concentration. For Er-doped films, above the saturation limit, the evaluated capture energy is higher than for films with concentration below the limit, in good agreement with the different behaviour obtained from luminescence data. For Eu-doped films, the difference between capture energy and grain boundary barrier is not so evident, even though the luminescence spectra are rather distinct.
Resumo:
Fluorindate glasses containing 1,2,3,4 ErF3 mol % were prepared in a dry box under argon atmosphere. Absorption, Stokes luminescence (under visible and infrared excitation), the dependence of 4S3/2, 4I11/2, and 4I13/2 lifetimes with Er concentration, and upconversion under Ti-saphire laser excitation at λ=790 nm were measured, mostly at T=77 and 300 K. The upconversion results in a strong green emission and weaker blue and red emissions whose intensity obeys a power-law behavior I∼Pn, where P is the infrared excitation power and n=1.6, 2.1, and 2.9 for the red, green, and blue emissions, respectively. The red emission exponent n=1.5 can be explained by a cross relaxation process. The green and blue emissions are due to excited state absorption (ESA) and energy transfer (ET) processes that predict a factor n=2 and n=3 for the green and blue emissions, respectively. From transient measurements we concluded that for lightly doped samples the green upconverted emission is originated due to both processes ESA and ET. However, for heavily doped samples ET is the dominant process.
Resumo:
Two distinct expressions of the interaction potential between arbitrarily oriented curved vortex lines with respect to the crystal c axis are derived within the London approximation. One of these expressions is used to compute the eigenvalues of the elasticity matrix. We examine the elastic properties of the vortex chain lattice, recently proposed, concerning shearing deformation.
Resumo:
We study a one-dimensional extended Peierls-Hubbard model coupled to intracell and intercell phonons for a half-filled band. The calculations are made using the Hartree-Fock and adiabatic approximations for arbitrary temperature. In addition to static spin, charge, and bond density waves, we predict intermediate phases that lack inversion symmetry, and phase transitions that reduce symmetry on increasing temperature.
Resumo:
The BCS superconductivity to Bose condensation crossover problem is studied in two dimensions in S, P, and D waves, for a simple anisotropic pairing, with a finite-range separable potential at zero temperature. The gap parameter and the chemical potential as a function of Cooper-pair binding B c exhibit universal scaling. In the BCS limit the results for coherence length ξ and the critical temperature T c are appropriate for highT c cuprate superconductors and also exhibit universal scaling as a function of B c.
Resumo:
We report on efficient frequency upconversion in Er3+-doped fluoroindate glass. The process is observed under 1.48 μm laser diode excitation and results in fluorescence generation in the range from ultraviolet to near-infrared radiation. The study was performed for samples containing 1, 2, and 3 ErF3 mol % in the range of temperatures from 24 to 448 K. The upconverted signals were studied as a function of the laser intensity, and their dynamical behavior is described using a rate equation model which allows us to obtain the energy transfer rates between Er3+ ions in pairs and triads.