131 resultados para Collision theory model


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Computer experiments of interstellar cloud collisions were performed with a new smoothed-particle-hydrodynamics (SPH) code. The SPH quantities were calculated by using spatially adaptive smoothing lengths and the SPH fluid equations of motion were solved by means of a hierarchical multiple time-scale leapfrog. Such a combination of methods allows the code to deal with a large range of hydrodynamic quantities. A careful treatment of gas cooling by H, H(2), CO and H II, as well as a heating mechanism by cosmic rays and by H(2) production on grains surface, were also included in the code. The gas model reproduces approximately the typical environment of dark molecular clouds. The experiments were performed by impinging two dynamically identical spherical clouds onto each other with a relative velocity of 10 km s(-1) but with a different impact parameter for each case. Each object has an initial density profile obeying an r(-1)-law with a cutoff radius of 10 pc and with an initial temperature of 20 K. As a main result, cloud-cloud collision triggers fragmentation but in expense of a large amount of energy dissipated, which occurred in the head-on case only. Off-center collision did not allow remnants to fragment along the considered time (similar to 6 Myr). However, it dissipated a considerable amount of orbital energy. Structures as small as 0.1 pc, with densities of similar to 10(4) cm(-3), were observed in the more energetic collision.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Sharp transitions are perhaps absent in QCD, so that one looks for physical quantities which may reflect the phase change. One such quantity is the sound velocity which was shown in lattice theory to become zero at the transition point for pure glue. We show that even in a simple bag model the sound velocity goes to zero at temperature T = T(v) not-equal 0 and that the numerical value of this T(v) depends on the nature of the meson. The average thermal energy of mesons goes linearly with T near T(v), with much smaller slope for the pion. The T(v) - s can be connected with the Boltzmann temperatures obtained from transverse momentum spectrum of these mesons in heavy-ion collision at mid-rapidity. It would be interesting to check the presence of different T(v) - s in present day finite T lattice theory.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We develop a systematic scheme to treat binary collisions between ultracold atoms in the presence of a strong laser field, tuned to the red of the trapping transition. We assume that the Rabi frequency is much less than the spacing between adjacent bound-state resonances, In this approach we neglect fine and hyperfine structures, but consider fully the three-dimensional aspects of the scattering process, up to the partial d wave. We apply the scheme to calculate the S matrix elements up to the second order in the ratio between the Rabi frequency and the laser detuning, We also obtain, fur this simplified multichannel model, the asymmetric line shapes of photoassociation spectroscopy, and the modification of the scattering length due to the light field at low, but finite, entrance kinetic energy. We emphasize that the present calculations can be generalized to treat more realistic models, and suggest how to carry out a thorough numerical comparison to this semianalytic theory. [S1050-2947(98)04902-6].

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We consider arbitrary U (1) charged matter non-minimally coupled to the self-dual field in d = 2 + 1. The coupling includes a linear and a rather general quadratic term in the self-dual field. By using both Lagragian gauge embedding and master action approaches we derive the dual Maxwell Chern-Simons-type model and show the classical equivalence between the two theories. At the quantum level the master action approach in general requires the addition of an awkward extra term to the Maxwell Chern-Simons-type theory. Only in the case of a linear coupling in the self-dual field can the extra term be dropped and we are able to establish the quantum equivalence of gauge invariant correlation functions in both theories.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We consider the minimal chiral Schwinger model, by embedding the gauge non-invariant formulation into a gauge theory following the Batalin-Fradkin-Fradkina-Tyutin point of view. Within the BFFT procedure, the second-class constraints are converted into strongly involutive first-class ones, leading to an extended gauge-invariant formulation. We also show that, like the standard chiral model, in the minimal chiral model the Wess-Zumino action can be obtained by performing a q-number gauge transformation into the effective gauge non-invariant action.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We study energy localization on the oscillator chain proposed by Peyrard and Bishop to model DNA. We search numerically for conditions with initial energy in a small subgroup of consecutive oscillators of a finite chain and such that the oscillation amplitude is small outside this subgroup on a long time scale. We use a localization criterion based on the information entropy and verify numerically that such localized excitations exist when the nonlinear dynamics of the subgroup oscillates with a frequency inside the reactive band of the linear chain. We predict a mimium value for the Morse parameter (mu>2.25) (the only parameter of our normalized model), in agreement with the numerical calculations (an estimate for the biological value is mu=6.3). For supercritical masses, we use canonical perturbation theory to expand the frequencies of the subgroup and we calculate an energy threshold in agreement with the numerical calculations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We propose a simple toy model for quintessential inflation where a complex scalar field described by a Lagrangian with a U(1)(PQ) symmetry spontaneously broken at a high energy scale and explicitly broken by instanton effects at a much lower energy can account for both the early inflationary phase and the recent accelerated expansion of the Universe. The real part of the complex field plays the role of the in flaton whereas the imaginary part, the 'axion', is the quintessence field.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The evaluation of free carrier concentration based on Drude's theory can be performed by the use of optical transmittance in the range 800-2000 nm (near infrared) for Sb-doped SnO2 thin films. In this article, we estimate the free carrier concentration for these films, which are deposited via sol-gel dip-coating. At approximately 900 mn, there is a separation among transmittance curves of doped and undoped samples. The plasma resonance phenomena approach leads to free carrier concentration of about 5 x 1020 cm(-3). The increase in the Sb concentration increases the film conductivity; however, the magnitude of measured resistivity is still very high. The only way to combine such a high free carrier concentration with a rather low conductivity is to have a very low mobility. It becomes possible when the crystallite dimensions are taken into account. We obtain grains with 5 nm of average size by estimating the grain size from X-ray diffraction data, and by using line broadening in the diffraction pattern. The low conductivity is due to very intense scattering at the grain boundary, which is created by the presence of a large amount of nanoscopic crystallites. Such a result is in accordance with X-ray photoemission spectroscopy data that pointed to Sb incorporation proportional to the free electron concentration, evaluated according to Drude's model. (c) 2006 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Complex mass poles, or ghost poles, are present in the Hartree-Fock solution of the Schwinger-Dyson equation for the nucleon propagator in renormalizable models with Yukawa-type meson-nucleon couplings, as shown many years ago by Brown, Puff and Wilets (BPW), These ghosts violate basic theorems of quantum field theory and their origin is related to the ultraviolet behavior of the model interactions, Recently, Krein et.al, proved that the ghosts disappear when vertex corrections are included in a self-consistent way, softening the interaction sufficiently in the ultraviolet region. In previous studies of pi N scattering using ''dressed'' nucleon propagator and bare vertices, did by Nutt and Wilets in the 70's (NW), it was found that if these poles are explicitly included, the value of the isospin-even amplitude A((+)) is satisfied within 20% at threshold. The absence of a theoretical explanation for the ghosts and the lack of chiral symmetry in these previous studies led us to re-investigate the subject using the approach of the linear sigma-model and study the interplay of low-energy theorems for pi N scattering and ghost poles. For bare interaction vertices we find that ghosts are present in this model as well and that the A((+)) value is badly described, As a first approach to remove these complex poles, we dress the vertices with phenomenological form factors and a reasonable agreement with experiment is achieved, In order to fix the two cutoff parameters, we use the A((+)) value for the chiral limit (m(pi) --> 0) and the experimental value of the isoscalar scattering length, Finally, we test our model by calculating the phase shifts for the S waves and we find a good agreement at threshold. (C) 1997 Elsevier B.V. B.V.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Mass relations for hadrons containing a single heavy quark (charm or beauty) are studied from the viewpoint of a quark model with broken SU(8) symmetry, developed by Hendry and Lichtenberg some time ago, in comparison to that of the heavy quark effective theory. The interplay of the two approaches is explored and spectroscopic consequences derived.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this work, the plate bending formulation of the boundary element method (BEM) based on the Reissner's hypothesis is extended to the analysis of zoned plates in order to model a building floor structure. In the proposed formulation each sub-region defines a beam or a slab and depending on the way the sub-regions are represented, one can have two different types of analysis. In the simple bending problem all sub-regions are defined by their middle surface. on the other hand, for the coupled stretching-bending problem all sub-regions are referred to a chosen reference surface, therefore eccentricity effects are taken into account. Equilibrium and compatibility conditions are automatically imposed by the integral equations, which treat this composed structure as a single body. The bending and stretching values defined on the interfaces are approximated along the beam width, reducing therefore the number of degrees of freedom. Then, in the proposed model the set of equations is written in terms of the problem values on the beam axis and on the external boundary without beams. Finally some numerical examples are presented to show the accuracy of the proposed model.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The SU(2) Shyrme model, expanding in the collective coordinates variables, gives rise to second-class constraints. Recently this system was embedded in a more general Abelian gauge theory using the BFFT Hamiltonian method. in this work we quantize this gauge theory computing the Noether current anomaly using for this two different methods: an operatorial Dirac first class formalism and the non-local BV quantization coupled with the Fujikawa regularization procedure. (C) 2000 Elsevier B.V. B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We contrast four distinct versions of the BCS-Bose statistical crossover theory according to the form assumed for the electron-number equation that accompanies the BCS gap equation. The four versions correspond to explicitly accounting for two-hole-(2h) as well as two-electron-(2e) Cooper pairs (CPs), or both in equal proportions, or only either kind. This follows from a recent generalization of the Bose-Einstein condensation (GBEC) statistical theory that includes not boson-boson interactions but rather 2e- and also (without loss of generality) 2h-CPs interacting with unpaired electrons and holes in a single-band model that is easily converted into a two-band model. The GBEC theory is essentially an extension of the Friedberg-Lee 1989 BEC theory of superconductors that excludes 2h-CPs. It can thus recover, when the numbers of 2h- and 2e-CPs in both BE-condensed and non-condensed states are separately equal, the BCS gap equation for all temperatures and couplings as well as the zero-temperature BCS (rigorous-upper-bound) condensation energy for all couplings. But ignoring either 2h- or 2e-CPs it can do neither. In particular, only half the BCS condensation energy is obtained in the two crossover versions ignoring either kind of CPs. We show how critical temperatures T-c from the original BCS-Bose crossover theory in 2D require unphysically large couplings for the Cooper/BCS model interaction to differ significantly from the T(c)s of ordinary BCS theory (where the number equation is substituted by the assumption that the chemical potential equals the Fermi energy). (c) 2007 Published by Elsevier B.V.