175 resultados para CYLINDER
Resumo:
Estudou-se a anatomia de raízes de 27 espécimes de 13 espécies de Actinocephalus (Koern.) Sano que ocorrem nos campos rupestres brasileiros. As raízes de todos os espécimes estudados caracterizam-se por apresentar: epiderme unisseriada, com pêlos radiculares em grupos ou isolados; córtex com células isodiamétricas, com exceção daquelas localizadas mais internamente, que são menores e apresentam paredes espessadas; endoderme unisseriada, com células de paredes pouco ou totalmente espessadas, alongadas no sentido radial; periciclo formado por uma camada de células de paredes finas ou espessadas e cilindro vascular com elementos do metaxilema ocupando a posição central. A presença de córtex constituído por células isodiamétricas, sem aerênquima; epiderme e parênquima cortical com protuberâncias intracelulares associadas com fungos; são características consistentes para o gênero e corroboram a sua recente circunscrição. As raízes apresentam estruturas anatômicas semelhantes àquelas das espécies de Eriocaulaceae que ocorrem em solos secos, apesar de muitos indivíduos ocorrerem em solos úmidos, próximos a riachos.
Resumo:
In the present work we study a long superconducting wire with a columnar defect in the presence of an applied magnetic field. The cross section of the cylinder is assumed to be circular. The field is taken uniform and parallel to the cylinder axis. We use the London theory to investigate the vortex lattice inside the wire. Although this theory is valid in the limit of low vortex density, that is, when the nearest neighbor vortex distance is much larger than the coherence length, we can obtain a reasonable qualitative description of lattice properties. We calculate: (1) the vortex lattice structure using the simulated annealing technique; (2) the magnetization curve as a function of the applied field.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Statement of problem. Two problems found in prostheses with soft liners are bond failure to the acrylic resin base and loss of elasticity due to material aging.Purpose. This in vitro study evaluated the effect of thermocycling on the bond strength and elasticity of 4 long-term soft denture liners to acrylic resin bases.Material and methods. Four soft lining materials (Molloplast-B, Flexor, Permasoft, and Pro Tech) and 2 acrylic resins (Classico, and Lucitone 199) were processed for testing according to manufacturers' instructions. Twenty rectangular specimens (10 X 10-mm(2) cross-sectional area) and twenty cylinder specimens (12.7-mm diameter X 19.0-mm height) for each liner/resin combination were used for the tensile and deformation tests, respectively. Specimen shape and liner thickness were standardized. Samples were divided into a test group that was thermocycled 3000 times and a control group that was stored for 24 hours in water at 37degreesC. Mean bond strength, expressed in megapascals (Wa), was determined in the tensile test with the use of a universal testing machine at a crosshead speed of 5 mm/min. Elasticity, expressed as percent of permanent deformation, was calculated with an instrument for measuring permanent deformation described in ADA/ANSI specification 18. Data from both tests were examined with 1-way analysis of variance and a Tukey test, with calculation of a Scheffe interval at a 95% confidence level.Results. In the tensile test under control conditions, Molloplast-B (1.51 +/- 0.28 MPa [mean SD]) and Pro Tech (1.44 +/- 0.27 MPa) liners had higher bond strength values than the others (P < .05). With regard to the permanent deformation test, the lowest values were observed for Molloplast-B (0.48% +/- 0.19%) and Flexor (0.44% +/- 0.14%) (P < .05). Under thermocycling conditions, the highest bond strength occurred with Molloplast-B (1.37 +/- 0.24 MPa) (P < .05) With regard to the deformation test, Flexor (0.46% +/- 0.13%) and Molloplast-B (0.44% +/- 0.17%) liners had lower deformation values than the others (P < .05).Conclusion. The results of this in vitro study indicated that bond strength and permanent deformity values of the 4 soft denture liners tested varied according to their chemical composition. These tests are not completely valid for application to dental restorations because the forces they encounter are more closely related to shear and tear. However, the above protocol serves as a good method of investigation to evaluate differences between thermocycled and control groups.
Resumo:
Steady-state concentric cylinder equipment was used to determine the effective thermal conductivity of beans (Phaseolus vulgaris). The measuring cell had no heated end guards and its length to diameter ratio was 10.5. Glass beads were employed to assess the accuracy and repeatability of the experimental system under heat transfer conditions. The results agree well with those reported in the literature so that the system can be considered reliable. Corn was used to verify the system's accuracy under heat and mass transfer conditions. Again the results were satisfactory. Moisture migration was observed and measured during the tests with beans, but this behavior does not compromise thermal conductivity values if both thermal and mass transfer steady-states are correctly interpreted. The effective thermal conductivity increases linearly with increasing grain moisture content. Statistical regression leads to good estimates of the fitted parameters.
Resumo:
The general principles of the mechanisms of heat transfer are well known, but knowledge of the transition between evaporative and non-evaporative heat loss by Holstein cows in field conditions must be improved, especially for low-latitude environments. With this aim 15 Holstein cows managed in open pasture were observed in a tropical region. The latent heat loss from the body surface of the animals was measured by means of a ventilated capsule, while convective heat transfer was estimated by the theory of convection from a horizontal cylinder and by the long-wave radiation exchange based on the Stefan-Boltzmann law. When the air temperature was between 10 and 36 degrees C the sensible heat transfer varied from 160 to -30 W m(-2), while the latent heat loss by cutaneous evaporation increased from 30 to 350 W m(-2). Heat loss by cutaneous evaporation accounted for 20-30% of the total heat loss when air temperatures ranged from 10 to 20 degrees C. At air temperatures > 30 degrees C cutaneous evaporation becomes the main avenue of heat loss, accounting for approximately 85% of the total heat loss, while the rest is lost by respiratory evaporation.
Resumo:
The freezing point depression (FPD) of orange juice at different concentrations was measured by using a simple apparatus. Results showed that the initial freezing point decreased approximately 90% with the increase of juice concentration between 46degrees and 66degrees Brix (water content respectively between 52.8 and 32.8% w/w). The thermal conductivity of orange juice as a function of fluid concentration was also investigated by using a coaxial dual-cylinder apparatus. Below the freezing point, the thermal conductivity was strongly affected by both the orange juice concentration and temperature. Simple equations in terms of water content and temperature could be adjusted to experimental data of FPD and thermal conductivity.
Resumo:
The rheological behavior of egg yolk was studied at a range of temperatures (277-333 K) using a concentric cylinder viscometer. Rheological behavior was pseudoplastic and flow curves fitted by the power law model. The consistency and behavior indexes, dependent on temperature, were expressed by an Arrhenius-type equation. The rheological parameters, together with experimental values of pressure loss in tube flow were used to calculate friction factors. The good agreement between predicted and observed values confirmed the reliability of the equations proposed for describing the flow behavior of the egg yolk. (c) 2005 Published by Elsevier Ltd.
Resumo:
This study evaluated the effect of mechanical cycling on the bond strength of fiber posts bonded to root dentin. The hypotheses examined were that bond strength is not changed after fatigue testing and bond strength does not present vast variations according to the type of fiber post. Sixty crownless, single-rooted human teeth were endodontically treated, with the space prepared at 12 mm. Thirty specimens received a quartz fiber post (Q-FRC (DT Light-Post), and the remaining 30 specimens received a glass fiber post (G-FRC) (FRC Postec Plus). All the posts were resin luted (All Bond+Duolink), and each specimen was embedded in a cylinder with epoxy resin. The specimens were divided into six groups: G1-Q-FRC+no cycling, G2- Q-FRC+20,000 cycles (load: 50N, angle of 45 degrees; frequency: 8Hz); G3- Q-FRC+2,000,000 cycles; G4- G-FRC+no cycling; G5- G-FRC+20,000 cycles; G6- GFRC+2,000,000 cycles. The specimens were cut perpendicular to their long axis, forming 2-mm thick disc-samples, which were submitted to the push-out test. ANOVA (alpha=.05) revealed that: (a) QFRC (7.1 +/- 2.2MPa) and G-FRC (6.9 +/- 2.1MPa) were statistically similar (p=0.665); (b) the no cycling groups (7.0 +/- 2.4MPa), 20,000 cycles groups (7.0 +/- 2.1MPa) and 2,000,000 cycles groups (7.0 +/- 2.0MPa) were statistically similar (p=0.996). It concluded that mechanical cycling did not affect the bond strength of two fiber posts bonded to dentin.
Resumo:
In the present work we investigate the behavior of a vortex in a long superconducting cylinder near to a columnar defect at the center. The derivations of the local magnetic field distribution and the Gibbs free energy will be carried out for a cylinder and a cavity of arbitrary sizes. From the general expressions, it is considered two particular limits: one in which the radius of the cavity is very small but the radius of the superconducting cylinder is kept finite; and one in which the radius of the superconducting cylinder is taken very large (infinite) but the radius of the cavity is kept finite. In both cases the maximum number of vortices which are allowed in the cavity is determined. In addition, the surface barrier field for flux entrance into the cavity is calculated. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
We provide physical interpretation for the four parameters of the stationary Lewis metric restricted to the Weyl class. Matching this spacetime to a completely anisotropic, rigidly rotating, fluid cylinder, we obtain from the junction conditions that one of these parameters is proportional to the vorticity of the source. From the Newtonian approximation a second parameter is found to be proportional to the energy per unit of length. The remaining two parameters may be associated to a gravitational analog of the Aharanov-Bohm effect. We prove, using the Cartan scalars, that the Weyl class metric and static Levi-Civita metric are locally equivalent, i.e., indistinguishable in terms of its curvature.
Resumo:
The authors presents a clinical case treated with brachytherapy performed with special mold of gold-198 disc, with the purpose of evaluating the distribution of radiation dose, the viability of manufacturing the radioactivity prosthesis and its operational cost. In despite of being only one case, we can conclude that the prosthesis with gold-198 foils can be manufactured in acrylic with thickness thinner than those ones with cylinder of cesium-137, resulting lower operational costs, besides permitting better distribution of radiation dose on the lesion. (C) 1999 Elsevier B.V. Ltd. All rights reserved.
Resumo:
The rheological behavior of Brazilian orange juice with different water content (0.34-0.73 w/w) was studied at a wide range of temperatures (0.5-62 degrees C) using a concentric cylinder viscometer. The results indicated that the juices behave as pseudoplastic fluids with yield stress, being represented by the Herschel-Bulkley model. The rheological parameters were fitted as functions of both temperature and water content in the tested range. Based on dimensional analysis it was proposed a modified Reynolds number (Re-M), which includes the Herschel-Bulkley parameters. Experimental data of friction factors during heating and cooling processes of orange juice in laminar flow through circular tubes could be well correlated as a function of Re-M. (C) 1999 Elsevier B.V. Ltd. All rights reserved.
Resumo:
The rheological behavior of coffee extract with different water contents (49 to 90%) was studied at a wide range of temperatures (274 to 365 K) using a concentric cylinder rheometer. The flow curves followed different models depending on the concentration and temperature level. Newtonian behavior was observed at high values of water content and temperature, changing to power law as these values were decreased. The Newtonian viscosity as well as the consistency and behavior index could be well correlated by functions simultaneously dependent on temperature and water content. The rheological parameters, together with experimental values of pressure loss in tube flow, were used to calculate friction factors. These showed to be in good agreement with those resulting from classical theoretical and empirical equations, thus confirming the reliability of the rheological measurements.
Resumo:
The effect of boron (B) on cotton growth and fruit shedding may be due not only to physiological or biochemical effects, but also to vascular tissue malformation. This experiment investigated petiole and floral peduncle anatomical alterations and growth of cotton supplied with deficient and sufficient B in nutrient solution. Cotton (Gossypium hirsutum cv. 'Delta Opal') plants were grown in solutions containing 0, 1.5, 3.0, 4.5, and 6.0 mu mol L-1 of B from 22 to 36 d after plant emergence (DAPE). From 36 to 51 DAPE, B was omitted from the nutrient solution. Petioles from young leaves and floral bud peduncles (first position of the first sympodial) were sampled and the cross-section anatomy observed under an optical microscope. The number of vascular bundles of the petiole was decreased in B-deficient plants and the xylem was disorganized. Phloem elements in the peduncle vascular cylinder of B-deficient plants did not show clear differentiation. The few xylem elements that were formed were also disorganized. Modifications caused by B deficiency may have impaired B and photosynthate translocation into new cotton growth. Boron accumulation in the shoot of B-deficient plants suggested that there was some B translocation within the plant. It could be inferred that cotton growth would be impaired by the decrease in carbohydrate translocation rather than by B deficiency in the tissue alone.