133 resultados para Blink kinematics


Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper describes a nonlinear phenomenon in the dynamical behavior of a nonlinear system under two non-ideal excitations: the self-synchronization of unbalanced direct current motors. The considered model is taken as a Duffing system that is excited by two unbalanced direct current motors with limited power supplies. The results obtained by using numerical simulations are discussed in details.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A general technique to embed non-uniform displacement discontinuities into standard solid finite elements is presented. The technique is based on the decomposition of the kinematic fields into a component related to the deformation of the solid portion of the element and one related to the rigid-body motion due to a displacement discontinuity. This decomposition simplifies the incorporation of discontinuity interfaces and provides a suitable framework to account for non-uniform discontinuity modes. The present publication addresses two families of finite element formulations: displacement-based and stress hybrid finite element. © 2005 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The power flow problem, in transmission networks, has been well solved, for most cases, using Newton-Raphson method (NR) and its decoupled versions. Generally speaking, the solution of a non-linear system of equations refers to two methods: NR and Successive Substitution. The proposal of this paper is to evaluate the potential of the Substitution-Newton-Raphson Method (SNR), which combines both methods, on the solution of the power flow problem. Simulations were performed using a two-bus test network in order to observe the characteristics of these methods. It was verified that the NR is faster than SNR, in terms of convergence, considering non-stressed scenarios. For those cases where the power flow in the network is closed to the limits (stressed system), the SNR converges faster. This paper presents the power flow formulation of the SNR and describes its potential for its application in special cases such as stressed scenarios. © 2006 IEEE.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In the presence of a cosmological constant, ordinary Poincaré special relativity is no longer valid and must be replaced by a de Sitter special relativity, in which Minkowski space is replaced by a de Sitter spacetime. In consequence, the ordinary notions of energy and momentum change, and will satisfy a different kinematic relation. Such a theory is a different kind of a doubly special relativity. Since the only difference between the Poincaré and the de Sitter groups is the replacement of translations by certain linear combinations of translations and proper conformal transformations, the net result of this change is ultimately the breakdown of ordinary translational invariance. From the experimental point of view, therefore, a de Sitter special relativity might be probed by looking for possible violations of translational invariance. If we assume the existence of a connection between the energy scale of an experiment and the local value of the cosmological constant, there would be changes in the kinematics of massive particles which could hopefully be detected in high-energy experiments. Furthermore, due to the presence of a horizon, the usual causal structure of spacetime would be significantly modified at the Planck scale. © 2007 American Institute of Physics.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In the presence of a cosmological constant, interpreted as a purely geometric entity, absence of matter is represented by a de Sitter spacetime. As a consequence, ordinary Poincaré special relativity is no longer valid and must be replaced by a de Sitter special relativity. By considering the kinematics of a spinless particle in a de Sitter spacetime, we study the geodesics of this spacetime, the ensuing definitions of canonical momenta, and explore possible implications for quantum mechanics. © 2007 American Institute of Physics.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper presents the virtual environment implementation for project simulation and conception of supervision and control systems for mobile robots, that are capable to operate and adapting in different environments and conditions. This virtual system has as purpose to facilitate the development of embedded architecture systems, emphasizing the implementation of tools that allow the simulation of the kinematic conditions, dynamic and control, with real time monitoring of all important system points. For this, an open control architecture is proposal, integrating the two main techniques of robotic control implementation in the hardware level: systems microprocessors and reconfigurable hardware devices. The implemented simulator system is composed of a trajectory generating module, a kinematic and dynamic simulator module and of a analysis module of results and errors. All the kinematic and dynamic results shown during the simulation can be evaluated and visualized in graphs and tables formats, in the results analysis module, allowing an improvement in the system, minimizing the errors with the necessary adjustments optimization. For controller implementation in the embedded system, it uses the rapid prototyping, that is the technology that allows, in set with the virtual simulation environment, the development of a controller project for mobile robots. The validation and tests had been accomplish with nonholonomics mobile robots models with diferencial transmission. © 2008 IEEE.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Low-frequency multipath is still one of the major challenges for high precision GPS relative positioning. In kinematic applications, mainly, due to geometry changes, the low-frequency multipath is difficult to be removed or modeled. Spectral analysis has a powerful technique to analyze this kind of non-stationary signals: the wavelet transform. However, some processes and specific ways of processing are necessary to work together in order to detect and efficiently mitigate low-frequency multipath. In this paper, these processes are discussed. Some experiments were carried out in a kinematic mode with a controlled and known vehicle movement. The data were collected in the presence of a reflector surface placed close to the vehicle to cause, mainly, low-frequency multipath. From theanalyses realized, the results in terms of double difference residuals and statistical tests showed that the proposed methodology is very efficient to detect and mitigate low-frequency multipath effects. © 2008 IEEE.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Introduction. Gait becomes the individual independence for their daily activities. The functional deficit caused by central lesion as stroke, makes difficult this motor independence, mainly the locomotion. Objective. Analyze the kinematics gait in stroke patients. Method. It was included 8 patients with clinical diagnosis of stroke, 4 with hemiparesia on the right and 4 on the left. It was analyzed gait spatial-temporal parameters as: length, duration and average speed of the step, using the register in videotape and the software of image 6.3 Dvideow Barros. Results. All patients presented alterations in the kinematics standards of the gait, with lesser duration and length of step, and greater speed than normal subjects. Conclusion. The motor disorder caused by the central lesions produces alterations in the kinematics standards of the gait, in order to adapt the neuro-sensorial sequels, the demands of the task and the way where they live.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

After a short introduction to the nonmesonic weak decay (NMWD) ΛN→nN of Λ-hypernuclei we discuss the long-standing puzzle on the ratio Γn/Γp, and some recent experimental evidences that signalized towards its final solution. Two versions of the Independent-Particle-Shell-Model (IPSM) are employed to account for the nuclear structure of the final residual nuclei. They are: (a) IPSM-a, where no correlation, except for the Pauli principle, is taken into account, and (b) IPSM-b, where the highly excited hole states are considered to be quasi-stationary and are described by Breit-Wigner distributions, whose widths are estimated from the experimental data. We evaluate the coincidence spectra in Λ 4He, Λ 5He, Λ 12C, Λ 16O, and Λ 28Si, as a function of the sum of kinetic energies EnN=En+EN for N=n, p. The recent Brookhaven National Laboratory experiment E788 on Λ 4He, is interpreted within the IPSM. We found that the shapes of all the spectra are basically tailored by the kinematics of the corresponding phase space, depending very weakly on the dynamics, which is gauged here by the one-meson-exchange- potential. In spite of the straightforwardness of the approach a good agreement with data is achieved. This might be an indication that the final-state- interactions and the two-nucleon induced processes are not very important in the decay of this hypernucleus. We have also found that the π+K exchange potential with soft vertex-form-factor cutoffs (Λπ≈0. 7GeV, ΛK≈0.9GeV), is able to account simultaneously for the available experimental data related to Γp and Γn for Λ 4H, and Λ 5He. © 2010 American Institute of Physics.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Anterior cruciate ligament (ACL) injuries are common in sports. Studies investigating injury mechanisms have demonstrated that most injuries arise from landing tasks. Despite the demonstration of differences between male and female kinematics, there are no studies showing how males behave during different landing tasks. The objective of this study was to compare the angular and temporal kinematics of the lower limbs between two different landing tasks. Double leg and single leg landings were recorded in the frontal and sagittal plane in 15 male volleyball athletes by videogrammetry. Reduced hip and knee flexion and increased knee valgus were observed in the single leg landing task compared to the double leg landing task. No significant difference in landing time was observed between the two tasks. In conclusion, the results support the premise that lower limb kinematics change according to the task performed. Further studies are necessary to explore the impact of these kinematic differences on knee loading and to relate them to ACL injury mechanisms in men.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Introduction: Data describing the relationships between postural alignment and stance stability are scarce and controversial. Objective: The aim of this study was to evaluate the effects of sensory disturbances on knee alignment in upright stance and the effects of knee hyperextension on stance stability. Method: Kinetic and kinematic data of 23 healthy adult women were collected while quietly standing in four sensory conditions. Kinematic data: knee angle (dependent variables) variations were analyzed across sensory conditions. Kinetic data: as subjects with hyperextended knees showed a clear tendency to flex their knees as balance challenge increased, center of pressure (COP) parameters (dependent variables) were analyzed in each sensory condition among trial sub-groups: Aligned-Trials (knee angle < 180°), Hyperextended-Trials (>180°) and Adjusted-Trials (>180° initially, turned <180° under challenging conditions). Results: Differences were found in mean velocity of COP in two conditions showing that knee alignment can affect stance stability. Conclusion: Knee hyperextension is a transient condition changing under postural challenges. Knee hyperextension affected postural control as mean velocity was the highest in the hyperextended group in natural standing sensory condition and lowest with sensory disturbance. © 2009 Elsevier Ltd.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper, a trajectory tracking control problem for a nonholonomic mobile robot by the integration of a kinematic neural controller (KNC) and a torque neural controller (TNC) is proposed, where both the kinematic and dynamic models contains disturbances. The KNC is a variable structure controller (VSC) based on the sliding mode control theory (SMC), and applied to compensate the kinematic disturbances. The TNC is a inertia-based controller constituted of a dynamic neural controller (DNC) and a robust neural compensator (RNC), and applied to compensate the mobile robot dynamics, and bounded unknown disturbances. Stability analysis with basis on Lyapunov method and simulations results are provided to show the effectiveness of the proposed approach. © 2012 Springer-Verlag.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Aim: The objective of the present study was to investigate the effect of a multimodal exercise intervention on frontal cognitive functions and kinematic gait parameters in patients with Alzheimer's disease. Methods: A sample of elderly patients with Alzheimer's disease (n=27) were assigned to a training group (n=14; aged 78.0±7.3years) and a control group (n=13; aged 77.1±7.4years). Multimodal exercise intervention includes motor activities and cognitive tasks simultaneously. The participants attended a 1-h session three times a week for 16weeks, and the control participants maintained their regular daily activities during the same period. The frontal cognitive functions were evaluated using the Frontal Assessment Battery, the Clock Drawing Test and the Symbol Search Subtest. The kinematic parameters of gait-cadence, stride length and stride speed were analyzed under two conditions: (i) free gait (single task); and (ii) gait with frontal cognitive task (walking and counting down from 20 - dual task). Results and discussion: The patients in the intervention group significantly increased the scores in frontal cognitive variables, Frontal Assessment Battery (P<0.001) and Symbol Search Subtest (P<0.001) after the 16-week period. The control group decreased the scores in the Clock Drawing Test (P=0.001) and increased the number of counting errors during the dual task (P=0.008) after the same period. Conclusion: The multimodal exercise intervention improved the frontal cognitive functions in patients with Alzheimer's disease. © 2012 Japan Geriatrics Society.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This study investigated kinematic patterns in clinically normal German Shepherd dogs (GSDs) compared to those with hip dysplasia and with no clinical signs of lameness. Two groups of GSDs, including 10 clinically healthy dogs (G1) and 10 with hip dysplasia (G2), were trotted on a treadmill at a constant speed. Kinematic data were collected by a 3-camera system and analysed by a motion-analysis program. Flexion and extension joint angles and angular velocities were determined for the shoulder, elbow, carpal, hip, stifle, and tarsal joints.Within each group, the differences between the right and left limbs in all kinematic variables were not significant. Minimum angle, angular displacement and minimum angular velocity did not differ between groups. Significant differences were observed in the maximum angular velocity and maximum angle of the hip joint (dysplastic. >. healthy), and in the maximum angular velocity of the carpal joint (healthy. >. dysplastic). It was concluded that, when trotting on a treadmill, dysplastic dogs with no signs of lameness may present joint kinematic alterations in the hind as well as the forelimbs. © 2012 Elsevier Ltd.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Objective: To determine the nervous activation, muscle strength, and biomechanical parameters that influence the cost of walking in older fallers and non-fallers. Methods: Maximal voluntary isokinetic torque was measured for the hip, knee and ankle of older women. Oxygen consumption was measured at rest and during 8 min of walking at self-selected speed. An additional minute of walking was performed to collect kinematic variables and the electromyographic signal of trunk, hip, knee, and ankle muscles, which was analyzed by the linear envelope. Cost of walking was calculated by subtracting resting body mass-normalized oxygen consumption from walking body mass-normalized oxygen consumption. Stride time and length, and ankle and hip range of motion were calculated from kinematic data. Findings: Older adult fallers had 28% lower knee extensor strength (p = 0.02), 47% lower internal oblique activation at heel contact (p = 0.03), and higher coactivation between tibialis anterior and gastrocnemius lateralis in each of the gait phases (p < 0.05). For fallers, a higher activation of gluteus maximus was associated with a higher cost of walking (r = 0.55, p < 0.05 and r = 0.71, p < 0.01, before and after heel contact, respectively). For non-fallers, an association between cost of walking and age (r = 0.60, p = 0.01) and cost of walking and thigh muscle coactivation (r = 0.53, p = 0.01) existed. Interpretation: This study demonstrated that there may be links between lower-extremity muscle weakness, muscle activation patterns, altered gait, and increased cost of walking in older fallers. © 2013 Elsevier Ltd. All rights reserved.