241 resultados para Anomalous Scattering
Resumo:
In this work, we study the influence of the way pious couple to nucleons in perturbative calculation of an observable in the pion-nucleon scattering.
Resumo:
The WW gamma triple gauge boson coupling parameters are studied using p (p) over bar -> l nu gamma + X(l = e, mu) events at root s = 1.96 TeV. The data were collected with the D0 detector from an integrated luminosity of 162 pb(-1) delivered by the Fermilab Tevatron Collider. The cross section times branching fraction for p (p) over bar -> W(gamma) + X -> l nu gamma + X with E-T(gamma) > 8 GeV and Delta R-l gamma > 0.7 is 14.8 +/- 1.6(stat) +/- 1.0(syst) +/- 1.0(lum) pb. The one-dimensional 95% confidence level limits on anomalous couplings are -0.88 < Delta kappa(gamma) < 0.96 and -0.20 < lambda(gamma) < 0.20.
Production of WZ events in pp(-) collisions at root s=1.96 TeV and limits on anomalous WWZ couplings
Resumo:
We present results from a search for WZ production with subsequent decay to l nu l'(l) over bar'(l and l' = e or mu) using 0.30 fb(-1) of data collected by the D0 experiment between 2002 and 2004 at the Fermilab Tevatron. Three events with WZ decay characteristics are observed. With an estimated background of 0.71 +/- 0.08 events, we measure the WZ production cross section to be 4.5(-2.6)(+3.8) pb, with a 95% C.L. upper limit of 13.3 pb. The 95% C.L. limits for anomalous WWZ couplings are found to be -2.0
Resumo:
Elastic and inelastic positron-helium scattering have been investigated in different partial waves at medium energies using the close-coupling approximation with realistic wavefunctions employing the following states: He(1s1s), He(1s2s), He(1s2p), He(1s3s), He(1s3p), Ps(1s), Ps(2s) and Ps(2p). All excitations of the helium atom are in the spin-singlet electronic state. Calculations are reported of cross sections to He(1s1s), He(1s2s), and He(1s2p) transitions for incident positron energies up to 200 eV. These cross sections are in good agreement with experimental results.
Resumo:
We present a measurement of the Z gamma production cross section and limits on anomalous ZZ gamma and Z gamma gamma couplings for form-factor scales of Lambda=750 and 1000 GeV. The measurement is based on 138 (152) candidates in the ee gamma (mu mu gamma) final state using 320(290) pb(-1) of p (p) over bar collisions at root s=1.96 TeV. The 95% C.L. limits on real and imaginary parts of individual anomalous couplings are vertical bar h(10,30)(Z)vertical bar < 0.23, vertical bar h(20,40)(Z)vertical bar < 0.020, vertical bar h(10,30)(gamma)vertical bar < 0.23, and vertical bar h(20,40)(gamma)vertical bar < 0.019 for Lambda=1000 GeV.
Resumo:
We estimate the attainable limits on the coefficients of dimension-6 operators from the analysis of Higgs boson phenomenology, in the framework of a SUL(2) x U-Y(1) gauge-invariant effective Lagrangian. Our results, based on the data sample already collected by the collaborations at Fermilab Tevatron, show that the coefficients of Higgs-vector boson couplings can be determined with unprecedented accuracy. Assuming that the coefficients of all blind operators are of the same magnitude, we are also able to impose more restrictive bounds on the anomalous vector-boson triple couplings than the present limit from double gauge boson production at the Tevatron collider.
Resumo:
We examine the gamma p photoproduction and the hadronic gamma gamma total cross sections by means of a QCD eikonal model with a dynamical infrared mass scale. In this model, where the dynamical gluon mass is the natural regulator for the tree level gluon-gluon scattering, the gamma p and gamma gamma total cross sections are derived from the pp and (p) over barp forward scattering amplitudes assuming vector meson dominance and the additive quark model. We show that the validity of the cross section factorization relation sigma(pp)/sigma(gamma p)=sigma(gamma p)/sigma(gamma gamma) is fulfilled depending on the Monte Carlo model used to unfold the hadronic gamma gamma cross section data, and we discuss in detail the case of sigma(gamma gamma -> hadrons) data with W-gamma gamma> 10 GeV unfolded by the Monte Carlo generators PYTHIA and PHOJET. The data seems to favor a mild dependence with the energy of the probability (P-had) that the photon interacts as a hadron.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
In a simplest case we employ dimensional regularization method in order to evaluate the contribution of two pion exchanges to the NN interaction. The method allows one to treat the infinities of scattering amplitude in a way consistent with the symmetries of the theory.
Resumo:
We study the low-energy scattering of charmed (D) and strange (K) mesons by nucleons. The short-distance part of the interaction is due to quark-gluon interchanges derived from a model that realizes dynamical chiral symmetry breaking and confines color. The quark-gluon interaction incorporates a confining Coulomb-like potential extracted from lattice QCD simulations in Coulomb gauge and a transverse hyperfine interaction consistent with a finite gluon propagator in the infrared. The long-distance part of the interaction is due to single vector (rho, omega) and scalar (sigma) meson exchanges. We show results for scattering cross-sections for isospin I = 0 and I = 1.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
The semiclassical limit of quantum mechanical scattering in two dimensions is developed and the Wentzel-Kramers-Brillouin and eikonal results for two-dimensional scattering is derived. No backward or forward glory scattering is present in two dimensions. Other phenomena, such as rainbows and orbiting, do occur. (C) 2008 American Association of Physics Teachers.