67 resultados para Ambiguous images
Resumo:
Human intestinal parasites constitute a problem in most tropical countries, causing death or physical and mental disorders. Their diagnosis usually relies on the visual analysis of microscopy images, with error rates that may range from moderate to high. The problem has been addressed via computational image analysis, but only for a few species and images free of fecal impurities. In routine, fecal impurities are a real challenge for automatic image analysis. We have circumvented this problem by a method that can segment and classify, from bright field microscopy images with fecal impurities, the 15 most common species of protozoan cysts, helminth eggs, and larvae in Brazil. Our approach exploits ellipse matching and image foresting transform for image segmentation, multiple object descriptors and their optimum combination by genetic programming for object representation, and the optimum-path forest classifier for object recognition. The results indicate that our method is a promising approach toward the fully automation of the enteroparasitosis diagnosis. © 2012 IEEE.
Resumo:
In this work we propose a new image inpainting technique that combines texture synthesis, anisotropic diffusion, transport equation and a new sampling mechanism designed to alleviate the computational burden of the inpainting process. Given an image to be inpainted, anisotropic diffusion is initially applied to generate a cartoon image. A block-based inpainting approach is then applied so that to combine the cartoon image and a measure based on transport equation that dictates the priority on which pixels are filled. A sampling region is then defined dynamically so as to hold the propagation of the edges towards image structures while avoiding unnecessary searches during the completion process. Finally, a cartoon-based metric is computed to measure likeness between target and candidate blocks. Experimental results and comparisons against existing techniques attest the good performance and flexibility of our technique when dealing with real and synthetic images. © 2013 Elsevier B.V. All rights reserved.
Resumo:
Pós-graduação em Artes - IA
Resumo:
Pós-graduação em História - FCHS
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Algae bloom is one of the major consequences of the eutrophication of aquatic systems, including algae capable of producing toxic substances. Among these are several species of cyanobacteria, also known as blue-green algae, that have the capacity to adapt themselves to changes in the water column. Thus, the horizontal distribution of cyanobacteria harmful algae blooms (CHABs) is essential, not only to the environment, but also for public health. The use of remote sensing techniques for mapping CHABs has been explored by means of bio-optical modeling of phycocyanin (PC), a unique inland waters cyanobacteria pigment. However, due to the small number of sensors with a spectral band of the PC absorption feature, it is difficult to develop semi-analytical models. This study evaluated the use of an empirical model to identify CHABs using TM and ETM+ sensors aboard Landsat 5 and 7 satellites. Five images were acquired for applying the model. Besides the images, data was also collected in the Guarapiranga Reservoir, in São Paulo Metropolitan Region, regarding the cyanobacteria cell count (cells/mL), which was used as an indicator of CHABs biomass. When model values were analyzed excluding calibration factors for temperate lakes, they showed a medium correlation (R²=0.81, p=0.036), while when the factors were included the model showed a high correlation (R²=0.96, p=0.003) to the cyanobacteria cell count. The empirical model analyzed proved useful as an important tool for policy makers, since it provided information regarding the horizontal distribution of CHABs which could not be acquired from traditional monitoring techniques.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)