120 resultados para Alternative solvents
Resumo:
The dynamics of the restricted three-body Earth-Moon-particle problem predicts the existence of direct periodic orbits around the Lagrangian equilibrium point L1. From these orbits, we derive a set of trajectories that form links between the Earth and the Moon and are capable of performing transfers between terrestrial and lunar orbits, in addition to defining an escape route from the Earth-Moon system. When we consider a more complex and realistic dynamical system - the four-body Sun-Earth-Moon-particle (probe) problem - the trajectories have an expressive gain of inclination when they penetrate in the lunar influence sphere, thus allowing the insertion of probes into low-altitude lunar orbits with high inclinations, including polar orbits. In this study, we present these links and investigate some possibilities for performing an Earth-Moon transfer based on these trajectories. (C) 2007 COSPAR. Published by Elsevier Ltd. All rights reserved.
Resumo:
This paper describes 2 alternative methodologies for the determination of selected aldehydes (formaldehyde, acetaldehyde, propionaldehyde, acrolein, and benzaldehyde) by capillary electrophoresis (CE), the first approach is based on the formation of aldehyde-bisulfite adducts and employs free solution CE with reversed electroosmotic flow and indirect detection, using 10 mmol/L 3,5-dinitrobenzoic acid (pH 4.5) containing 0.2 mmol/L cetyltrimethylammonium bromide as the electrolyte. This novel methodology showed a fairly good sensitivity to concentration, with detection limits with respect to a single aldehyde on the order of 10-40 mu g/L, a reasonable analysis time (separation was achieved in <8 min), and no need for sample manipulation. A second approach was proposed in which 2,4-dinitrophenylhydrazine derivatives of the aldehydes were detected in a micellar electrolyte medium (20 mmol/L berate buffer containing 50 mmol/L sodium dodecyl sulfate and 15 mmol/L beta-cyclodextrin). This latter methodology included a laborious sample preconcentration step and showed much poorer sensitivity (0.5-2 mg/L detection limit, with respect to a single aldehyde), despite the use of sodium chloride to promote sample stacking. Both methodologies proved adequate to evaluate aldehyde levels in vehicular emissions. Samples from the tailpipe exhaust of a passenger car vehicle without a catalytic converter and operated with an ethanol-based fuel were collected and analyzed; the results showed high levels of formaldehyde and acetaldehyde (0.41-6.1 ppm, v/v). The concentrations estimated by the 2 methodologies, which were not in good agreement, suggest the possibility of striking differences in sample collection efficiency, which was not the concern of this work.
Resumo:
We present a non-radioactive alternative to Southern's (J. Mol. Biol. 98: 503-517, 1975) DNA-DNA hybridization technique. The use of AMPPD - Disodium 3-(4-Methoxyspiro {1,2-dioxetane-3,2'tricyclo[3.3.1.1(3,7)]decan}-4-yl)phyenyl phosphate as an alternative substrate for AP-mediated detection of digoxigenin-11 dUTP-labeled probes made possible the simple and nonhazardous reuse of blots. We used 0.8 % agarose gels containing 30 mug per lane of Eucalyptus saligna DNA, digested with Eco RI, electrophoresed and blotted on to nylon membranes (Hybond-N, Amersham, UK), using the Southern blotting procedure, and UV irradiated for one minute for DNA fixation. The hybridizations were carried out overnight with digoxigenin labeled random inserts of E. saligna DNA by using the Genius Kit (Boehringer Mannheim). Detection of the DNA-DNA hybrids was performed in the presence of 0.5% blocking agent and the substrates NBT/BCIP were replaced by 0.26 mM AMPPD in the final alkaline assay buffer (50 mul/cm2). After membrane incubation for five minutes at room temperature in a sealed plastic bag, the AMPPD solution was retrieved and stored at 4-degrees-C for reuse. A Kodak X-BRAF QA-S film was pressed firmly onto the bag containing the wet membrane, exposed for two to six hours and then developed. After use, the probes were stripped off and the blots reutilized, three times so far, with the same results.
Resumo:
The production of antimicrobial compounds of some strains of Lactobacillus acidophilus has been studied. They have been grown in whey supplemented with soy milk. It has been found that the production of compounds is able to inhibit the growing of both target bacteria analysed: Staphylococcus aureus and Escherichia coli. The results showed a significant variation (p>0.05) depending on the strain of L. acidophilus and on the level of supplementation utilized. Most of the inhibition observed resulted from the presence of the lactic acid produced. It has also been found the production of other antimicrobial compounds showing inhibitory capacity. The action of these compounds was influenced by the substract pH.
Resumo:
The conventional power flow method is considered to be inadequate to obtain the maximum loading point because of the singularity of Jacobian matrix. Continuation methods are efficient tools for solving this kind of problem since different parameterization schemes can be used to avoid such ill-conditioning problems. This paper presents the details of new schemes for the parameterization step of the continuation power flow method. The new parameterization options are based on physical parameters, namely, the total power losses (real and reactive), the power at the slack bus (real or reactive), the reactive power at generation buses, and transmission line power losses (real and reactive). The simulation results obtained with the new approach for the IEEE test systems (14, 30, 57, and 118 buses) are presented and discussed in the companion paper. The results show that the characteristics of the conventional method are not only preserved but also improved.
Resumo:
New parameterization schemes have been proposed by the authors in Part I of this paper. In this part these new options for the parameterization of power flow equations are tested, namely, the total power losses (real and reactive), the power at the slack bus (real or reactive), the reactive power at generation buses, and the transmission line power losses (real and reactive). These different parameterization schemes can be used to obtain the maximum loading point without ill-conditioning problems, once the singularity of Jacobian matrix is avoided. The results obtained with the new approach for the IEEE test systems (14, 30, 57, and 118 buses) show that the characteristics of the conventional method are not only preserved but also improved. In addition, it is shown that the proposed method and the conventional one can be switched during the tracing of PV curves to determine, with few iterations, all points of the PV curve. Several tests were also carried out to compare the performance of the proposed parameterization schemes for the continuation power flow method with the use of both the secant and tangent predictors.
Resumo:
Separation and purification of lanthanum from other rare-earth (RE) elements are highly complex processes comprising several steps of extraction using organic solvents or ion-exchange resins at high costs. In order to study the biosorption process as an alternative for conventional lanthanum recovery, this work investigated some basic aspects of lanthanum-Sargassum biomass interactions in batch equilibrium contact. The dynamics of biosorption, influence of pH, and the desorption of this RE were investigated. Maximum biosorption coefficient (q(max)) increased from 0.05 at pH 2 to 0.53 mmol g(-1) at pH 5 for lanthanum sulfate. When lanthanum chloride was used, a higher q(max) at pH 5 (0.73 mmol g(-1)) was observed as compared to the sulfate salt (q(max) = 0.53 mmol g(-1)) at the same pH. Adsorption and desorption curves pointed out a complete recovery of metal adsorbed in the Sargassum fluitans biomass, showing a reversibility of this process and indicating the potential of biosorption for lanthanum removal and recovery. (C) 2002 Elsevier B.V. B.V. All rights reserved.
Resumo:
Statement of problem. The success of metal-ceramic restorations is influenced by the compatibility between base metal alloys and porcelains. Although porcelain manufacturers recommend their own metal systems as the most compatible for fabricating metal-ceramic prostheses, a number of alloys have been used.Purpose. This study evaluated the shear bond strength between a porcelain system and 4 alternative alloys.Material and methods. Two Ni-Cr alloys: 4 ALL and Wiron 99, and 2 Co-Cr alloys: IPS d.SIGN 20 and Argeloy NP were selected for this study. The porcelain (IPS d.Sign porcelain system) portion of the cylindrical inetal-ceramic specimens was 4 mm thick and 4 mm high; the metal portion was machined to 4 x 4 mm, with a base that was 5 nun thick and 1 mm high. Forty-four specimens were prepared (n=11). Ten specimens from each group were subjected to a shear load oil a universal testing machine using a 1 min/min crosshead speed. One specimen from each group was observed with a scanning electron microscope. Stress at failure (MPa) was determined. The data were analyzed with a 1-way analysis of variance (alpha=.05).Results. The groups, all including IPS d.Sign porcelain, presented the following mean bond strengths (+/-SD) in MPa: 4 ALL, 54.0 +/- 20.0; Wiron, 63.0 +/- 13.5; IPS d.SIGN 20, 71.7 +/- 19.2; Argeloy NP, 55.2 +/- 13.5. No significant differences were found among the shear bond strength values for the metal-ceramic specimens tested.Conclusion. None of the base metal alloys studied demonstrated superior bond strength to the porcelain tested.
Resumo:
Objectives. Taking into consideration that DNA damage and cellular death play important roles during carcinogenesis, the purpose of the present study was to evaluate in vitro genotoxic or cytotoxic effects of chloroform and eucalyptol by single cell gel (comet) assay and trypan blue exclusion test, respectively.Study design. Chloroform and eucalyptol were exposed to Chinese hamster ovary cells in culture directly for 3 hours at 37 degrees C at final concentrations ranging from 1.25 to 10 mu L/mL. The negative control group was treated with vehicle control (phosphate-buffered solution), and the positive control group was treated with methyl metasulfonate (MMS, at 1 mu g/mL concentration). All data were analyzed by the Kruskal-Wallis nonparametric test followed by the Dunn test.Results. The results showed that both gutta-percha solvents were cytotoxic at concentrations of 2.5, 5, and 10 mu L/mL (P < .05). on the other hand, both solvents did not induce DNA breakage at 1.25 mu L/mL concentration.Conclusions. These results suggest that both chloroform or eucalyptol are strong cytotoxicants, but they may not be a factor that increases the level of DNA lesions in mammalian cells.
Resumo:
Flotation has been widely used in studies of recent foraminifera in order to concentrate tests and save time during picking. In this paper, four flotation agents with different densities were compared: (1) trichloroethylene, TCE (C2HCl3), with a density of 1.46 g mL(-1); (2) sodium nitrate/sodium thiosulfate solution, SNT (NaNO3 + Na2O3S2 center dot 5H(2)O), with a density of 1.46 g mL(-1); (3) zinc chloride Solution, ZC (ZHCl(2)), with a density of 1.70 g mL(-1); and (4) sodium polytungstate solution, SPT (3Na(2)WO(4) center dot 9WO(3) center dot 5H(2)O), with a density of 2.50 g mL(-1). Comparison was carried out by means of qualitative and quantitative data. Results showed that ZC and SPT were the best flotation agents, recovering 91% and 96% of the total tests, respectively, whereas TCE and SNT recovered 59.1% and 72.8%, respectively. Both quantitative and qualitative results significantly improved with a higher density of the flotation liquid. Therefore, substitution of TCE with ZC or SPT solutions is strongly encouraged, because they are, additionally, less harmful to health and the environment. ZC is the most cost-effective, since its results were not significantly different from those of the SPT treatment. Carbon tetrachloride (CCl4) was not considered in this comparative study, because it has been banned in many countries and it is highly harmful to health and the environment.
Resumo:
The multilayer perceptron network has become one of the most used in the solution of a wide variety of problems. The training process is based on the supervised method where the inputs are presented to the neural network and the output is compared with a desired value. However, the algorithm presents convergence problems when the desired output of the network has small slope in the discrete time samples or the output is a quasi-constant value. The proposal of this paper is presenting an alternative approach to solve this convergence problem with a pre-conditioning method of the desired output data set before the training process and a post-conditioning when the generalization results are obtained. Simulations results are presented in order to validate the proposed approach.
Resumo:
Alternative sampling procedures are compared to the pure random search method. It is shown that the efficiency of the algorithm can be improved with respect to the expected number of steps to reach an epsilon-neighborhood of the optimal point.
Resumo:
In this work, the use of a natural yttrium oxide and rare earth oxide solid solution (CRE2O3) as stabilizers of the alpha-Si3N4 phase to form alpha-SiAlON has been investigated. This oxide mix is produced at FAENQUIL-DEMAR, at a cost of only 20% of pure commercial Y2O3. Two alpha-SiAlONs using pure Y2O3 or CRE2O3 have been prepared, using mixes of 20% by volume of a molar fraction of 9:1 of AlN to Y2O3 or AlN to CRE2O3, respectively, with 80% alpha-Si3N4. Samples were gas pressure-sintered at 1900 degreesC, under 1.5 MPa of N-2 for 60 min. Both compositions yielded alpha-SiAlON ceramics with high relative densities (98% t.d.), hardness of 18 GPa and fracture toughness of 5 Mpa m(1/2), with homogeneous microstructures composed of elongated alpha-SiAlON grains with aspect ratios of 5. It is concluded that the mixed rare earth concentrate (CRE2O3) can be used to produce alpha-SiAlON ceramics with similar microstructures and mechanical properties of alpha-SiAlON ceramics fabricated using pure Y2O3, but with the advantage of its lower production cost. (C) 2004 Elsevier B.V All rights reserved.
Resumo:
The objective of this letter is to propose an alternative modal representation of a nontransposed three-phase transmission line with a vertical symmetry plane by using two transformation matrices. Initially, Clarke's matrix is used to separate the line into components a, 0, and zero. Because a and zero components are not exact modes, they can be considered as being a two-phase line that will be decomposed in its exact modes by using a 2 x 2 modal transformation matrix. This letter will describe the characteristics of the two-phase line before mentioned. This modal representation is applied to decouple a nontransposed three-phase transmission line with a vertical symmetry plane whose nominal voltage is 440 kV.