87 resultados para 0204 Condensed Matter Physics


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper we present a Raman-scattering study of the phase transitions in the PbZr1-xTixO3 systems around the morphotropic phase boundary over a wide temperature range. The boundary between rhombohedral and monoclinic phases was found to be a quasivertical line between x = 0.46 and x = 0.47. We also studied the monoclinic-tetragonal phase boundary and our spectroscopic results agree very well with those reported by using x-ray diffraction.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A weak ferromagnetic phase is shown in pressed pellets of partially doped poly(3-methylthiophene) (P3MT) in the whole range from 1.8 to 300 K in magnetic measurements. Thermoremanence data have been used to estimate the suppression of this phase to be around 815 K. We also show that instead of the classical antiferromagnetism for the first-order interaction that gives weak ferromagnetism as a second-order effect, metamagnetic behavior is observed. X-band electron spin resonance (ESR) measurements and magnetization measurements allowed us to estimate that 8.1% of the total number of spins contributes to the weak ferromagnetism at room temperature. The doping level obtained from the ESR data is in good agreement with that estimated from electron dispersive spectroscopy measurements.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The structural characteristics of saturated silica sonogels were studied by means of small-angle x-ray scattering (SAXS) and thermogravimetric analysis (TG), after a long time of aging in saturated conditions. The sonogels were obtained by a sol-gel routine from ultrasound stimulated tetramethoxysilane (TMOS) hydrolysis carried out with the initial water/TMOS molar ratio (r) ranging from 2 to 10. The saturated sonogel structure can be described as composed by mass fractal-like aggregates (clusters) of primary silica particles, all imbibed in a liquid phase. The values of the mass fractal dimension (D) of the clusters was found all around 2.5, while the characteristic size of the clusters (ξ) was found generally increasing with r, going from approximately 2.3 nm (r = 2) to 4.5 nm (r = 10). The volume fraction of the clusters was estimated from the SAXS data. The results were compared to the values of weight loss fraction at the inflection point that has been found in the derivative of the TG curve, which should accounts for the instant in which the meniscus of the liquid phase penetrates into the clusters under a rapid evaporation process as in a TG test.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Illumination of photorefractive, iron-doped lithium niobate crystals (LiNbO 3:Fe) with x-rays generates a conductivity that we determine from the speed of hologram erasure. The doping levels of the crystals and the acceleration voltage of our x-ray tube are varied. A theoretical model is presented, which describes the obtained results. A decrease of the conductivity with increasing Fe 2+ concentration can be explained by assuming that holes are the dominant charge carriers for this short-wavelength illumination.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A comparative study using small-angle x-ray scattering (SAXS) and nitrogen adsorption has been carried out in the structural characterization of silica xerogels and aerogels, obtained from tetraethoxysilane sonohydrolysis. The specific surface and the mean pore size as measured by both the techniques were found to be in notable agreement in all cases for aerogels and xerogels. According to the SAXS data, aerogels at 500 °C exhibit a mass fractal structure with fractal dimension D∼2.4 in the range between the correlation length ξ∼5.3 nm and a∼0.75 nm. An experimental method to probe the mass fractal structure of aerogels from exclusively nitrogen adsorption isotherms has been presented. For aerogels at 500 °C, we have found D∼2.4 in the range between the pore width 2rξ∼33 nm and 2ra∼4.5 nm, which is in notable agreement with the SAXS results (D ∼2.4, ξ∼5.3 nm, a∼0.75 nm) if we assign the pore width 2r probed by the Kelvin equation in the adsorption method to the Bragg distance 2π/q associated to the correlation length 1/q probed by SAXS.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The structural evolution on the drying of wet sonogels of silica with the liquid phase exchanged by acetone, obtained from tetraethoxisilane sonohydrolysis, was studied in situ by small-angle x-ray scattering (SAXS). The periods associated to the structural evolution as determined by SAXS are in agreement with those classical ones established on basis of the features of the evaporation rate of the liquid phase in the obtaining of xerogels. The wet gel can be described as formed by primary particles (microclusters), with characteristic length a ∼ 0.67 nm and surface which is fractal, linking together to form mass fractal structures with mass fractal dimension D=2.24 in a length scale ξ∼6.7 nm. As the network collapses while the liquid/vapor meniscus is kept out of the gel volume, the mass fractal structure becomes more compacted by increasing D and decreasing ξ, with smoothing of the fractal surface of the microclusters. The time evolution of the density of the wet gels was evaluated exclusively from the SAXS parameters ξ, D, and a. The final dried acetone-exchanged gel presents Porod's inhomogeneity length of about 2.8 nm and apparently exhibits an interesting singularity D →3, as determined by the mass fractal modeling used to fit the SAXS intensity data for the obtaining of the parameters ξ and D.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

First-principles quantum-mechanical techniques, based on density functional theory (B3LYP level) were employed to study the electronic structure of ordered and deformed asymmetric models for Ba0.5Sr 0.5TiO3. Electronic properties are analyzed and the relevance of the present theoretical and experimental results on the photoluminescence behavior is discussed. The presence of localized electronic levels in the band gap, due to the symmetry break, would be responsible for the visible photoluminescence of the amorphous state at room temperature. Thin films were synthesized following a soft chemical processing. Their structure was confirmed by x-ray data and the corresponding photoluminescence properties measured.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Polycrystalline Nd1-xEuxNiO3 (0≤x≤0.5) compounds were synthesized in order to investigate the character of the metal-insulator (MI) phase transition in this series. Samples were prepared through the sol-gel route and subjected to heat treatments at ∼1000 °C under oxygen pressures as high as 80bar. X-ray diffraction (XRD) and neutron powder diffraction (NPD), electrical resistivity ρ(T), and magnetization M(T) measurements were performed on these compounds. The NPD and XRD results indicated that the samples crystallize in an orthorhombic distorted perovskite structure, space group Pbnm. The analysis of the structural parameters revealed a sudden and small expansion of ∼0.2% of the unit cell volume when electronic localization occurs. This expansion was attributed to a small increase of ∼0.003 of the average Ni-O distance and a simultaneous decrease of ∼-0.5° of the Ni-O-Ni superexchange angle. The ρ(T) measurements revealed a MI transition occurring at temperatures ranging from TMI∼193 to 336K for samples with x ≤ 0 and 0.50, respectively. These measurements also show a large thermal hysteresis in NdNiO3 during heating and cooling processes, suggesting a first-order character of the phase transition at TMI. The width of this thermal hysteresis was found to decrease appreciably for the sample Nd 0.7Eu0.3NiO3. The results indicate that cation disorder associated with increasing substitution of Nd by Eu is responsible for changing the first-order character of the transition in NdNiO3. © 2006 IOP Publishing Ltd.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have established a link between the global ac response and the local flux distribution of superconducting films by combining magnetic ac susceptibility, dc magnetization, and magneto-optical measurements. The investigated samples are three Nb films: a plain specimen, used as a reference sample, and other two films patterned with square arrays of antidots. At low temperatures and small ac amplitudes of the excitation field, the Meissner screening prevents penetration of flux into the sample. Above a certain ac drive threshold, flux avalanches are triggered during the first cycle of the ac excitation. The subsequent periodic removal, inversion, and rise of flux occurs essentially through the already-created dendrites, giving rise to an ac susceptibility signal weakly dependent on the applied field. The intradendrite flux oscillation is followed, at higher values of the excitation field, by a more drastic process consisting of creation of new dendrites and antidendrites. In this more invasive regime, the ac susceptibility shows a clear field dependence. At higher temperatures a smooth penetration occurs, and the flux profile is characteristic of a critical state. We have also shown that the regime dominated by vortex avalanches can be reliably identified by ac susceptibility measurements. © 2011 American Physical Society.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We investigate the effect that the temperature dependence of the crystal structure of a two-dimensional organic charge-transfer salt has on the low-energy Hamiltonian representation of the electronic structure. For that, we determine the crystal structure of κ-(BEDT-TTF) 2Cu 2(CN) 3 for a series of temperatures between T=5 and 300 K by single crystal X-ray diffraction and analyze the evolution of the electronic structure with temperature by using density functional theory and tight binding methods. We find a considerable temperature dependence of the corresponding triangular lattice Hubbard Hamiltonian parameters. We conclude that even in the absence of a change of symmetry, the temperature dependence of quantities like frustration and interaction strength can be significant and should be taken into account. © 2012 American Physical Society.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We report on superconductivity in CeFeAs 1-xP xO and the possible coexistence with Ce ferromagnetism (FM) in a small homogeneity range around x=30% with ordering temperatures of T SC≅T C≅4 K. The antiferromagnetic (AFM) ordering temperature of Fe at this critical concentration is suppressed to TNFe≈40 K and does not shift to lower temperatures with a further increase of the P concentration. Therefore, a quantum-critical-point scenario with TNFe→0 K which is widely discussed for the iron based superconductors can be excluded for this alloy series. Surprisingly, thermal expansion and x-ray powder diffraction indicate the absence of an orthorhombic distortion despite clear evidence for short-range AFM Fe ordering from muon-spin-rotation measurements. Furthermore, we discovered the formation of a sharp electron spin resonance signal unambiguously connected with the emergence of FM ordering. © 2012 American Physical Society.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We theoretically investigate the local density of states (LDOS) probed by an STM tip of ferromagnetic metals hosting a single adatom and a subsurface impurity. We model the system via the two-impurity Anderson Hamiltonian. By using the equation of motion with the relevant Green's functions, we derive analytical expressions for the LDOS of two host types: a surface and a quantum wire. The LDOS reveals Friedel-like oscillations and Fano interference as a function of the STM tip position. These oscillations strongly depend on the host dimension. Interestingly, we find that the spin-dependent Fermi wave numbers of the hosts give rise to spin-polarized quantum beats in the LDOS. Although the LDOS for the metallic surface shows a damped beating pattern, it exhibits the opposite behavior in the quantum wire. Due to this absence of damping, the wire operates as a spatially resolved spin filter with a high efficiency. © 2013 American Physical Society.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

X-band electron spin resonance (ESR) measurements have been performed on a conducting free-standing film of polyaniline plasticized and protonated with di-n-dodecyl ester of sulfosuccinic acid (DDoESSA). The magnetic field was applied parallel and perpendicular to the plane of the film. At around 75 K a transition is observed from Pauli susceptibility to a localized state in which the spin 1/2 polarons behave as spin 1/2 dimers. A rough estimation of the intradimer and interdimer exchange constants is obtained. Below 5 K, ESR data reveal a weak ferromagnetism with the Dzyaloshinskii-Moriya vector mainly oriented in the plane of the film. The existence of a relatively well-defined n-fold axis along the chain direction in the crystalline regions confers a symmetry compatible with such analysis. © 2013 IOP Publishing Ltd.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The hexagonal nanomembranes of the group III-nitrides are a subject of interest due to their novel technological applications. In this paper, we investigate the strain- and electric field-induced modulation of their band gaps in the framework of density functional theory. For AlN, the field-dependent modulation of the bandgap is found to be significant whereas the strain-induced semiconductor-metal transition is predicted for GaN. A relatively flat conduction band in AlN and GaN nanomembranes leads to an enhancement of their electronic mobility compared to that of their bulk counterparts. © 2013 IOP Publishing Ltd.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present a detailed low-temperature investigation of the statics and dynamics of the anions and methyl groups in the organic conductors (TMTSF) 2PF6 and (TMTSF)2AsF6 (TMTSF: tetramethyl-tetraselenafulvalene). The 4 K neutron-scattering structure refinement of the fully deuterated (TMTSF)2PF6-D12 salt allows locating precisely the methyl groups at 4 K. This structure is compared to the one of the fully hydrogenated (TMTSF)2PF6-H12 salt previously determined at the same temperature. Surprisingly, it is found that deuteration corresponds to the application of a negative pressure of 5×102 MPa to the H12 salt. Accurate measurements of the Bragg intensity show anomalous thermal variations at low temperature both in the deuterated PF 6 and AsF6 salts. Two different thermal behaviors have been distinguished. Small Bragg-angle measurements reflect the presence of low-frequency modes at characteristic energies θE = 8.3 K and θE = 6.7 K for the PF6-D12 and AsF6-D12 salts, respectively. These modes correspond to the low-temperature methyl group motion. Large Bragg-angle measurements evidence an unexpected structural change around 55 K, which probably corresponds to the linkage of the anions to the methyl groups via the formation of F...D-CD2 bonds observed in the 4 K structural refinement. Finally we show that the thermal expansion coefficient of (TMTSF)2PF6 is dominated by the librational motion of the PF6 units. We quantitatively analyze the low-temperature variation of the lattice expansion via the contribution of Einstein oscillators, which allows us to determine for the first time the characteristic frequency of the PF6 librations: θE ≈ 50 K and θE = 76 K for the PF6-D12 and PF6-H12 salts, respectively. © 2013 American Physical Society.