115 resultados para Òleo mineral
Resumo:
The ants of genus Atta belong to the Attine tribe (order Hymenoptera, family Formicidae, subfamily Myrmicinae) and are commonly known as leaf-cutting ants for having the habit of cutting several vegetable species used as substrate for growing mutualistic fungus (Agaricales: Lepiotaceae). Recent studies showed that, in addition to that, other fungi may occur in the nests in a dorment state or participate in the functioning dynamic of this symbiosis. Researches related to surveys of fungus biodiversity in nests of different Atta species have found important phytopathogenic representatives. In Brazil, studies about integrated management of plagues, developed by Embrapa Meio Ambiente (Embrapa Environment), point out the need of higher investments in projects that involve the phytopathogenic transmission by insects in order to reduce costs to control them or minimize environmental impact. The purpose of this study was to broaden the knowledge about the ecology of these fungi, isolating and identifying species associated with Attine tribe ants, thus understanding the scope of pathogenic and phytopathogenic species spread by these ants. For that reason, gynes were collected from Atta laevigata and Atta capiguara anthills located at Unesp Botucatu (São Paulo, Brazil) campus. In order to isolate the fungus, the mineral oil floating technique was used. The identification of the isolated fungi was done based on microscopic and molecular characteristics using DNA ribosomal sequencing. The most highly abundant genera found so far were: Cladosporium, Exophiala, Penicillium, Acremonium, Phialophora and Teratosphaeria. Representatives of the genera Exophiala, Phialophora and Cladosporium may be human pathogens, whereas Teratosphaeria and Penicillium are related to diseases in Eucalyptus and citric fruits, respectively. The results show that these ants may host important fungal species besides the ones already... (Complete abstract click electronic access below)
Resumo:
Os sistemas nanoestruturados são capazes de aumentar a permeação de um fármaco sem alterar as suas propriedades e direcioná-lo para regiões específicas favorecendo a interação com sistemas biológicos. Algumas formações dos sistemas nanoestruturados cristais líquidos, microemulsões podem permitir a liberação lenta do fármaco o que propicia um efeito mais prolongado da ação deste, aumento da solubilidade e estabilidade de fármacos, capacidade de agir como sistemas reservatórios, diminuição da toxicidade, bem como melhor a biodisponibilidade dos fármacos. A dexametasona (DMA) é um corticóide muito utilizado, mas que possui muitos efeitos colaterais,como eritema,hipertensão arterial,acne,aumento de peso e apetite,entre outros,devido sua capacidade de atravessar o estrato córneo por difusão, assim ele é capaz de alcançar a circulação e causar efeitos colaterais sistêmicos. Para diminuir a ação desses efeitos indesejáveis é preciso controlar a permeação desta classe de fármaco e aumentando a sua retenção cutânea. O objetivo deste trabalho foi avaliar o potencial de sistemas nanoestruturados estabilizados com álcool cetílico etoxilado e propoxilado(PRO) como tensoativo, ácido oléico (AO) ou óleo mineral (OM) como fases oleosas para a administração cutânea de DMA. Estas fases oleosas foram selecionadas por apresentarem características físico-químicas diferentes, bem como promoveram diferenças estruturais em formulações de estudos anteriores. A caracterização por microscopia de luz polarizada mostrou que a dexametasona pouco interfere na estruturação das formulações. A reologia mostrou que as formulações, com ácido oléico como fase oleosa, AO1 e AO2 são as formulações com melhores condições de aplicação cutânea. Os cristais líquido de fase cúbica, foram os que mais foram capazes de solubilizar DMA, além de apresentarem... (Resumo completo, clicar acesso eletrônico abaixo)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Pós-graduação em Agronomia (Entomologia Agrícola) - FCAV
Resumo:
Pós-graduação em Odontologia Restauradora - ICT
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
This project aimed to relate the efficiency of control of ACCase inhibiting herbicides applied post-emergence in Cenchrus echinatus under different soil water contents. The experiments were conducted in a greenhouse, with the application of three different herbicides (fluazifop-p-butyl, haloxyfop-methyl and sethoxydim + oil Assist) and the experimental design for each herbicide was completely randomized design with four replications, consisting a 3 x 4 factorial, with the combination of water management strategies (-0.03, -0.07 and -1.5 MPa) and four doses of these products (100, 50, 25 and 0% of the recommended dose). Herbicide application was made at vegetative stage of 2-3 tillers. The water management strategies were initiated in the development stage of two leaves, replacing the water until the soil reaches the potential of -0.01 MPa, when it came to severe pre-determined for each water management. The physiological parameters evaluated were: photosynthetic rate, stomatal conductance, transpiration, leaf temperature and plant dry matter. The visual assessments of phytotoxicity were performed at 7, 14, 21 and 28 days after application. The efficiency of these herbicides was influenced by soil management and water lowest in plants grown in the minimal potential of water in the soil of -1.5 MPa. All the herbicides were unsatisfactory controls in applications late (2-3 tiller plants).
Resumo:
Currently, the use of herbicides is essential in a practical and common in agricultural areas, but efficiency of these herbicides can be compromised when applied on plants that thrive in water deficit conditions, due to low uptake and translocation of the product. Therefore, the aim of this study was to compare the efficiency of control ACCase inhibiting herbicides applied post-emergence in plants of Eleusine indica under different soil water contents. The experiment was conducted in a greenhouse and the experimental design was completely randomized design with four replications, consisting of a 9x4 factorial, with the combination of three soil water potentials (-0.03, -0.07 and -1.5 MPa) three herbicides (fluazifop-p -butyl, haloxyfop-methyl and sethoxydim + oil) and four doses (0, 25, 50, and 100 % of the recommended dose). Herbicide application was made in plants in vegetative stage 2-3 tillers. The soil water potential was initiated in the development stage of two leaves, and the water was supplemented until the soil reaches the potential of -0.01 MPa, when it came to minimum pre-determined for each water management. The physiological parameters evaluated were: photosynthetic rate, stomatal conductance, transpiration leaf temperature and plant dry mass. The visual assessments of phytotoxicity were performed at 7 and 14 days after application. The herbicides behaved in different ways according to the used water management. In severe water stress conditions (soil moisture at 8%) only fluazifop-p-butyl herbicide achieved satisfactory control (> 90%) in E. indica plants.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Agronomia (Produção Vegetal) - FCAV
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The application technology shows many parameters related to the quality of the application, one is the droplet spectrum, which is influenced by the spray nozzles and the adjuvant used. Therefore, the objective of this work was estimate the behavior of the droplet spectrum generated with different nozzles and different adjuvants. The experiment was installed containing four solutions from different type adjuvant dilution, as vegetal oil, mineral oil, surfactant and drift reduction, which were applied with two nozzle, one pre-orifice flat fan (DG 8003 VS) and other of air induction flat fan (AI 8003 VS), totaling 8 treatments with 3 repetitions. The experiment was realized in ideal weather conditions for spraying. The treatments averages were compared using Confidence Interval at 95% probability and the correlations between variables were analyzed using Pearson at 5% of probability. The analysis of droplet spectrum showed different behavior for each adjuvant and nozzle. The surfactant treatment showed VMD superior for all treatments when sprayed with AI nozzles. For the %vol.<100 µm the lowest value found was for the AI nozzle in combination with the surfactant. The significant correlations found for the nozzles AI and DG were negative between VMD and %vol.<100 µm. It can be concluded that the values of DMV and %vol.<100 µm showed that the nozzle with pre-orifice have droplet spectrum more prone to drift. The surfactant showed to be the best drift reduction technique when combined with the AI nozzle.
Resumo:
The Asian rust currently is the main disease of soybean culture, having as characteristics the difficult control, by start at the bottom of plants where penetration of the droplets is harder. The fine droplets has been used with the intention of improve the penetration and increase efficiency of agrochemicals, but that are losses by drift easily. New products have been developed to increase deposition of the drops at targets. The aim of this work was evaluate the TA- 35 capacity to improving the deposition of fungicides spray solution with or without mineral oil by aerial and ground applications. Was used a factorial 3x2, three spray solutions composed by Priori Xtra (concentrated suspension of azoxystrobin 200 g L-1 + cyproconazole 80 g L-1 ) mixed with adjuvants, Nimbus (emulsifiable concentrate containing aliphatic hydrocarbons 428 g L-1 ) and TA-35 (soluble concentrate containing sodium lauryl ether sulfate, surfactants, sequestering agents and emulsifiers), in aerial and ground applications. In ground applications was used 50 L ha-1 , TXA 8002 VS spray nozzles and on aerials was used 15 L ha-1 , Turboaero atomizer, both applying fine droplets. Was utilized the Brilliant Blue (FD & C n. 1) tracer to determine the deposits. There were used glass slides as targets to collect spray droplets. After to extract the tracer of the targets using distilled water, the samples were analyzed by spectrophotometry, thereby was possible quantify the tracer deposited on each glass slide. A study to evaluate possible losses of the tracer by degradation or retention also was done. The comparative analysis of treatments was done by statistical method "Confidence Interval for Differences Between the Averages" with 95% of confidence degree (IC95%). There was degradation or retention of the tracer between the processes of application of the droplets and the processing of the samples. The deposition averages with the presence of TA-35 were greatest for both sprayers however, there were not significant differences among the treatments. The viability of TA-35 use may consider other parameters or complementary studies.
Resumo:
This study aimed to verify the influence of adjuvants on the droplet spectrum of an air induction nozzle. The experiment used nine spray solutions, one including only water and eight containing adjuvants: Nimbus® (mineral oil), Óleo vegetal Nortox (vegetal oil), Li-700® (a mixture of lecithin and propionic acid), Agral® (nonyl phenoxy poly ethanol), In-Tec® (nonyl phenol ethoxylate), Antideriva (nonyl phenol ethoxylate), Silwet® L-77 Ag (copolymer polyester and silicon) and TA 35 (sodium lauryl ether sulfate). A flat fan air induction nozzle Hypro® Guardian Air 110 03 was used for the droplet spectrum evaluation. The study was conducted at the Laboratory for Particle Size Analysis (Lapar), at FCAV/UNESP, Jaboticabal/SP - Brazil. The determination of the droplet spectrum characteristics (Volume Median Diameter/VMD, percentage of droplets smaller than 100 micrometers and span) was carried out by a particle size analyzer by laser diffraction Mastersizer S (Malvern Instruments). For statistical analysis the mean values were compared using Confidence Interval at 95% (CI 95%). The results showed that for the Hypro® GA air induction nozzle the oil based adjuvants (Óleo Vegetal Nortox e Nimbus®) increased the VMD. The percentage of droplets smaller than 100 micrometers was lower for the Agral®, Antideriva, In-Tec® e TA 35, in comparison with the Óleo Vegetal Nortox and Li-700®. The span was higher for the oil based adjuvants (Óleo Vegetal Nortox e Nimbus®) and lower for the TA 35 (sodium lauryl ether sulfate), showing that the TA 35 adjuvant has a potential to improve the quality of the droplet spectrum of the Hypro® GA 11003 nozzle.