928 resultados para Block Design
Resumo:
The way of applying zinc can influence the zinc uptake and productivity of crops, especially cereals that have high demand for this nutrient. The aim of this study is to evaluate methods of Zn application on soil, nutritional status and productivity of maize. For this, an experiment was undertaken at FCAV/UNESP, Jaboticabal-SP, in Oxisol clay (DTPA on Zn: 0.5 mg dm-3) with maize (hybrid Simple Impact), from December through May 2009. Nine treatments with three doses of Zn in soil banded application (in furrows) and three doses of Zn by incorporation in soil (0-20 cm depth), foliar application, seed application and control (no Zn). The treatments were arranged in a randomized block design with four replications. Regardless of the method, Zn application promoted higher contents of this micronutrient in soil and higher accumulation in the shoots as well as increasing Zn in the maize grain. However, it did not affect the nutritional status and yield of the maize. The Zn application in the soil resulted in a greater Zn uptake by plants and maize yield, compared to Zn application in the plant by seed or foliar.
Resumo:
Salt excess in soil and water used for irrigation can cause significant loss of production and growth in cultivated plants. Among some options for reduction of negative effects of salts to plants in cultivated areas, fermented bio fertilizer has been used to grow vegetables and fruit tree irrigated with saline water. The study aimed at evaluating the behavior of the noni plant to salinity of the irrigation water in substrate with and with no bio fertilizer. Treatments were arranged in a randomized block design with four replications, using a 5 × 2 factorial arrangement. Five levels of electrical conductivity of irrigation water (0.5, 1.5, 3.0, 4.5, 6.0 dS m-1) were used in substrates with and with no bio fertilizer. Parameters were evaluated as follows: plant height, stem diameter, number of leaves, leaf area, shoot dry matter and water consumption. All evaluated variables were negatively affected by the increase in salt concentration of the irrigation water, but always with less intense effects in treatments with bio fertilizer.The bio fertilizer does not eliminate, but mitigates the negative effects of salts in noni plants.
Resumo:
We evaluated animal production on black oats (Avena strigosa Schreb.) and italian ryegrass (Lolium multiflorum) pasture submitted to nitrogen top fertilization of 0; 150 and 300 kg ha-1, in the form of urea. We used 36 calves with average age and average weight of 10.5 months and 180 kg, respectively, as test-animals. The grazing system used was continuous with variable stocking rate. The block design was completely randomized with three replicates (paddock). Average weight gain was similar for the levels evaluated (0.925; 0.969 and 1.045 kg day-1, respectively). Stocking rate and live weight gain per hectare showed a linear relation with nitrogen levels. The efficiency of animal production was 2.040 and 1.766 kg of weight gain per kg of nitrogen used for the dose of 150 and 300 of N, respectively. The stocking rate and live weight gain per hectare of beef calves increased with the nitrogen levels, from 0 to 300 kg of N ha-1. However, the best efficiency in weight gain per unit of nitrogen applied was obtained with the dose of 150 kg of N ha-1.
Resumo:
Sorghum is an excellent alternative to other grains in poor soil where corn does not develop very well, as well as in regions with warm and dry winters. Intercropping sorghum [Sorghum bicolor (L.) Moench] with forage crops, such as palisade grass [Brachiaria brizantha (Hochst. ex A. Rich) Stapf] or guinea grass (Panicum maximum Jacq.), provides large amounts of biomass for use as straw in no-tillage systems or as pasture. However, it is important to determine the appropriate time at which these forage crops have to be sown into sorghum systems to avoid reductions in both sorghum and forage production and to maximize the revenue of the cropping system. This study, conducted for three growing seasons at Botucatu in the State of São Paulo in Brazil, evaluated how nutrient concentration, yield components, sorghum grain yield, revenue, and forage crop dry matter production were affected by the timing of forage intercropping. The experimental design was a randomized complete block design. Intercropping systems were not found to cause reductions in the nutrient concentration in sorghum plants. The number of panicles per unit area of sorghum alone (133,600), intercropped sorghum and palisade grass (133,300) and intercropped sorghum and guinea grass (134,300) corresponded to sorghum grain yields of 5439, 5436 and 5566kgha-1, respectively. However, the number of panicles per unit area of intercropped sorghum and palisade grass (144,700) and intercropped sorghum and guinea grass (145,000) with topdressing of fertilizers for the sorghum resulted in the highest sorghum grain yields (6238 and 6127kgha-1 for intercropping with palisade grass and guinea grass, respectively). Forage production (8112, 10,972 and 13,193Mg ha-1 for the first, second and third cuts, respectively) was highest when sorghum and guinea grass were intercropped. The timing of intercropping is an important factor in sorghum grain yield and forage production. Palisade grass or guinea grass must be intercropped with sorghum with topdressing fertilization to achieve the highest sorghum grain yield, but this significantly reduces the forage production. Intercropping sorghum with guinea grass sown simultaneously yielded the highest revenue per ha (€ 1074.4), which was 2.4 times greater than the revenue achieved by sowing sorghum only. © 2013 Elsevier B.V.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)