689 resultados para ANIMAL EXPERIMENT
Resumo:
Background: Birth weight (BW) is an economically important trait in beef cattle, and is associated with growth- and stature-related traits and calving difficulty. One region of the cattle genome, located on Bos primigenius taurus chromosome 14 (BTA14), has been previously shown to be associated with stature by multiple independent studies, and contains orthologous genes affecting human height. A genome-wide association study (GWAS) for BW in Brazilian Nellore cattle (Bos primigenius indicus) was performed using estimated breeding values (EBVs) of 654 progeny-tested bulls genotyped for over 777,000 single nucleotide polymorphisms (SNPs).Results: The most significant SNP (rs133012258, PGC = 1.34 × 10-9), located at BTA14:25376827, explained 4.62% of the variance in BW EBVs. The surrounding 1 Mb region presented high identity with human, pig and mouse autosomes 8, 4 and 4, respectively, and contains the orthologous height genes PLAG1, CHCHD7, MOS, RPS20, LYN, RDHE2 (SDR16C5) and PENK. The region also overlapped 28 quantitative trait loci (QTLs) previously reported in literature by linkage mapping studies in cattle, including QTLs for birth weight, mature height, carcass weight, stature, pre-weaning average daily gain, calving ease, and gestation length.Conclusions: This study presents the first GWAS applying a high-density SNP panel to identify putative chromosome regions affecting birth weight in Nellore cattle. These results suggest that the QTLs on BTA14 associated with body size in taurine cattle (Bos primigenius taurus) also affect birth weight and size in zebu cattle (Bos primigenius indicus). © 2013 Utsunomiya et al.; licensee BioMed Central Ltd.
Resumo:
The medullary raphé is an important component of the central respiratory network, playing a key role in CO2 central chemoreception. However, its participation in hypoxic ventilatory responses is less understood. In the present study, we assessed the role of nucleus raphé obscurus (ROb), and specifically 5-HT neurons confined in the ROb, on ventilatory and thermoregulatory responses to hypoxia. Chemical lesions of the ROb were performed using either ibotenic acid (non-specific lesion; control animals received PBS) or anti-SERT-SAP (5-HT specific lesion; control animals received IgG-SAP). Ventilation (VE; whole body plethysmograph) and body temperature (Tb; data loggers) were measured during normoxia (21% O2, N2 balance) and hypoxia exposure (7% O2, N2 balance, 1h) in conscious adult rats. Ibotenic acid or anti-SERT-SAP-induced lesions did not affect baseline values of VE and Tb. Similarly, both lesion procedures did not alter the ventilatory or thermoregulatory responses to hypoxia. Although evidence in the literature suggests a role of the rostral medullary raphé in hypoxic ventilatory responses, under the present experimental conditions our data indicate that caudal medullary raphé (ROb) and its 5-HT neurons neither participate in the tonic maintenance of breathing nor in the ventilatory and thermal responses to hypoxia. © 2013 Elsevier B.V.
Resumo:
Cancer pain is an important clinical problem and may not respond satisfactorily to the current analgesic therapy. We have characterized a novel and potent analgesic peptide, crotalphine, from the venom of the South American rattlesnake Crotalus durissus terrificus. In the present work, the antinociceptive effect of crotalphine was evaluated in a rat model of cancer pain induced by intraplantar injection of Walker 256 carcinoma cells. Intraplantar injection of tumor cells caused the development of hyperalgesia and allodynia, detected on day 5 after tumor cell inoculation. Crotalphine (6 μg/kg), administered p.o., blocked both phenomena. The antinociceptive effect was detected 1 h after treatment and lasted for up to 48 h. Intraplantar injection of nor-binaltorphimine (50 g/paw), a selective antagonist of κ-opioid receptors, antagonized the antinociceptive effect of the peptide, whereas N,N-diallyl-Tyr-Aib-Phe-Leu (ICI 174,864, 10 μg/paw), a selective antagonist of δ-opioid receptors, partially reversed this effect. On the other hand, D-Phe-Cys-Tyr-D-Trp-Orn-Thr-Pen-Thr amide (CTOP, 20 g/paw), an antagonist of μ-opioid receptors, did not modify crotalphine-induced antinociception. These data indicate that crotalphine induces a potent and long lasting opioid-mediated antinociception in cancer pain. © 2013 Elsevier Inc.
Resumo:
Ticks are hematophagous ectoparasites which can transmit several diseases to the host during their feeding process. When ticks mechanically damage the tissue, they eventually induce inflammatory responses on the skin spot where they are fixed. One of the alternatives to control these ectoparasites is the use of chemical substances like selamectin - the active principle of Pfizer's antiparasitic Revolution® - a macrocyclic lactone capable of doing neurotoxic damage to the tick and eventually eliminating infestation in dogs and cats. The purpose of this study was to analyze, using histological and histochemical techniques, the occurrence of morphophysiological alterations in the skin of the host rabbits exposed to selamectin and infested with Rhipicephalus sanguineus (Acari: Ixodidae). Histologically, the exposed and infested rabbits showed a partial and/or total decrease in the stratum corneum and the epithelium decreased in the number of cell layers, consequently reducing the stratification (thinning) and quite pronounced formations of sub-epidermal edemas with consequent disorganization of collagen fibers in the dermal layer's connective tissue. Histochemical tests showed strong periodic acid-Schiff-positive reaction in the hair follicle and some regions of the dermis, besides resynthesis of collagen fibers detected by Mallory's trichrome technique. The obtained results showed that selamectin acts like a toxicant agent when in contact with the skin of the rabbit infested with ticks, inducing morphophysiological alterations in the acute inflammatory process in the animal's tegument. Selamectin is a chemical substance which has a dose-dependent action since higher concentrations cause greater morphophysiological damage in the skin of rabbits. © 2013 Springer-Verlag Berlin Heidelberg.
Resumo:
Flavonoid-rich Praxelis clematidea (Griseb.) R.M.King & H.Robinson (Asteraceae) is a native plant of South America. This study evaluates the gastroprotective activity and possible mechanisms for both the chloroform (CHCl3P) and ethyl acetate phases (AcOEtP) obtained from aerial parts of the plant. The activity was investigated using acute models of gastric ulcer. Gastric secretion biochemical parameters were determined after pylorus ligature. The participation of cytoprotective factors such as mucus, nitric oxide (NO), sulfhydryl (SH) groups, prostaglandin E2 (PGE 2), reduced glutathione (GSH), superoxide dismutase (SOD), glutathione peroxidase (GPx), glutathione reductase (GR), reduction of lipid peroxidation (malondialdehyde level), and polymorphonuclear infiltration (myeloperoxidase activity), was also investigated. CHCl3P (125, 250, and 500 mg/kg) and AcOEtP (62.5, 125, and 250 mg/kg) showed significant gastroprotective activity, reducing the ulcerative index by 75, 83, 88 % and 66, 66, 81 % for ethanol; 67, 67, 56 % and 56, 53, 58 % for a non-steroidal anti-inflammatory drug (NSAID); and 74, 58, 59 % and 64, 65, 61 % for stress-induced gastric ulcer, respectively. CHCl3P (125 mg/kg) and AcOEtP (62.5 mg/kg) significantly reduced the ulcerative area by 78 and 83 %, respectively, for the ischemia-reperfusion model. They also did not alter the biochemical parameters of gastric secretion, the GSH level or the activities of SOD, GPx or GR. They increased the quantity of gastric mucus, not dependent on NO, yet dependent on SH groups, and maintained PGE2 levels. The P. clematidea phases demonstrated gastroprotective activity related to cytoprotective factors. © 2012 The Japanese Society of Pharmacognosy and Springer.
Resumo:
Several reports have shown that the hippocampus plays an important role in different aspects of the emotional control. There is evidence that lesions in this structure cause behavioral disinhibition, with reduction of reactions expressing fear and anxiety. Thus, to portray the aptitude of cell therapy to abrogate injuries of hippocampal tissue, we examined the behavioral effects of bone marrow mononuclear cells (BMMCs) transplantation on C57BL/6 mice that had the hippocampus damaged by electrolytic lesion. For this purpose, mice received, seven days after bilateral electrolytic lesion in the dorsal hippocampus, culture medium or BMMCs expressing the enhanced green fluorescent protein (EGFP) transgene. One week after transplantation, animals were tested in the elevated plus-maze (EPM). On the whole, three assessment sessions in the EPM were carried out, with seven days separating each trial. Thirty-five days after the induction of injury, mice were sacrificed and their brains removed for immunohistochemistry. The behavioral evaluation showed that the hippocampal lesion caused disinhibition, an effect which was slightly lessened, from the second EPM test, in transplanted subjects. On the other hand, immunohistochemical data revealed an insignificant presence of EGFP+ cells inside the brains of injured mice. In view of such scenario, we hypothesized that the subtle rehabilitation of the altered behavior might be a result from a paracrine effect from the transplanted cells. This might have been caused by the release of bioactive factors capable of boosting endogenous recuperative mechanisms for a partial regaining of the hippocampal functions. © 2013 Elsevier B.V.
Resumo:
Measures to control the cattle tick, Rhipicephalus (Boophilus) microplus, based only on chemical products are becoming unsustainable, mainly because of the development of resistance. The objective of this study was to test the effect of the aqueous extract of pineapple skin (AEPS) and bromelain extracted from the stem (Sigma-Aldrich®, B4882) on engorged females and larvae of R. (B.) microplus in vitro. These substances were diluted in water and evaluated at eight concentrations. Engorged females were collected and distributed in groups of 10, with three repetitions for each treatment. After immersion in the solutions, the females were placed in an incubator for observation of survival, oviposition and larval hatching. The larval packet method was used, also with three repetitions with about 100 larvae each. The packets were incubated and the readings were performed after 24h. The estimated reproduction and efficacy of the solutions were calculated. The LC50 and LC90 were estimated using the Probit procedure of the SAS program. The eight concentrations were compared within each treatment by the Tukey test. For the experiment with engorged females, the most effective concentrations were 125, 250 and 500mg/mL: 33%, 48% and 59% for the AEPS and 27%, 51% and 55% for the bromelain. The LC50 and LC90 values were, respectively, 276 and 8691mg/mL for AEPS and 373 and 5172mg/mL for bromelain. None of the dilutions tested was effective against the larvae of R. (B.) microplus. This is the first report of the action of pineapple extracts or their constituents on cattle ticks. The results demonstrate that further studies regarding composition of tick cuticle, with evaluation of other solvents and formulations, should be conducted seeking to enhance the effect of pineapple extracts and compounds against this ectoparasite. © 2013 Elsevier Inc.
Resumo:
Few studies have focused on experimental testosterone deprivation in immature animals. Therefore, this study used sexually immature rats aiming to evaluate the testes and epididymis histology and proteins expression in these organs on PND50 and 75, after premature antiandrogen exposure, from PND21 to 44. Although the androgen deprivation from pre-puberty up to peripuberty did not alter the histological organization of the testes and epididymis either at puberty or at adulthood, the treatment impaired the expression of specific proteins in epididymal tissue at puberty and adulthood (androgen receptor, calmodulin, Rab11A). These changes may be related to impaired epididymal function, sperm quality and fertility capacity as observed in a previous study. Further studies are necessary to better investigate the molecular mechanisms involved in the impairment on reproductive competence of male rats after precocious hormonal injury. © 2013 Elsevier Inc.
Resumo:
Male sheep of reproductive age were distributed into three groups: GI, a sheep inoculated (oral) with 2.0×105 oocysts of the P strain of Toxoplasma gondii; GII, a sheep infected (subcutaneous) with 1.0×106 tachyzoites of the RH strain of T. gondii; and GIII, a sheep kept as a control (not infected). After the inoculation of the males, 12 breeding ewes, which were not pregnant and which were serologically negative for reproductive diseases (particularly toxoplasmosis), were distributed into three groups, synchronized, and subsequently exposed to natural mating with previously inoculated males. The distribution was as follows: five ewes that underwent natural mating with the GI male, five ewes that were exposed to natural mating with the GII male, and two ewes that were mated with the non-infected male (control). Serum samples of all the ewes were collected on days -30, -14, -7, -1, and 0 (days before natural mating) and on days 1, 3, 5, 7, 11, 14, and weekly until birth; the presence of serum antibodies against T. gondii was assessed by IFAT. Using a bioassay and PCR, T. gondii was isolated from the semen of the infected reproducing sheep before mating. Following natural mating, 5 of the 12 females displayed antibodies specific for T. gondii; of these animals, two of the ewes underwent natural mating with the male inoculated with oocysts (GI) and three with the male infected with tachyzoites (GII). One of the females that displayed antibodies specific to this coccidian and that underwent natural mating with the GII sheep had a macerated fetus on the 70th day following coverage. Using a bioassay after the birth, it was possible to isolate T. gondii from samples of the pool of tissues from the five females that seroconverted after natural mating and from their respective lambs. Using PCR, the DNA of T. gondii was isolated from the pool of tissues from one and two females exposed to natural mating with the reproductive males infected with the oocysts and tachyzoites, respectively. Using this technique, it was also possible to diagnose the presence of the parasite in the pool of tissues from the lambs of one female that underwent natural mating with the male sheep infected with oocysts. These results demonstrated the sexual transmission of T. gondii in the sheep species with consequent vertical transmission to their lambs. © 2013 Elsevier B.V.
Resumo:
Ethanol (ETOH) consumption has been associated with endocrine and autonomic changes, including the development of hypertension. However, the sequence of pathophysiological events underlying the emergence of this effect is poorly understood. Aims: This study aimed to establish a time-course correlation between neuroendocrine and cardiovascular changes contributing to the development of hypertension following ETOH consumption. Methods: Male adult Wistar rats were subjected to the intake of increasing ETOH concentrations in their drinking water (first week: 5%, second week: 10%, third and fourth weeks: 20% v/v). Results: ETOH consumption decreased plasma and urinary volumes, as well as body weight and fluid intake. Furthermore, plasma osmolality, plasma sodium and urinary osmolality were elevated in the ETOH-treated rats. ETOH intake also induced a progressive increase in the mean arterial pressure (MAP), without affecting heart rate. Initially, this increasein MAP was correlated with increased plasma concentrations of adrenaline and noradrenaline. After the second week of ETOH treatment, plasma catecholamines returned to basal levels, and incremental increases were observed in plasma concentrations of vasopressin (AVP) and angiotensin II (ANG II). Conversely, plasma oxytocin, atrial natriuretic peptide, prolactin and the hypothalamus-pituitary-adrenal axis components were not significantly altered by ETOH. Conclusions: Taken together, these results suggest that increased sympathetic activity may contribute to the early increase in MAP observed inETOHtreated rats. However, the maintenance of this effect may be predominantly regulated by the long-term increase in the secretion of other circulating factors, such as AVP and ANG II, the secretion of both hormones being stimulated by the ETOH-induced dehydration. © The Author 2013. Medical Council on Alcohol and Oxford University Press. All rights reserved.
Resumo:
The insular cortex (IC) has been reported to be involved in the modulation of memory and autonomic and defensive responses. However, there is conflicting evidence about the role of the IC in fear conditioning. To explore the IC involvement in both behavioral and autonomic responses induced by contextual fear conditioning, we evaluated the effects of the reversible inhibition of the IC neurotransmission through bilateral microinjections of the non-selective synapse blocker CoCl2 (1 mm) 10 min before or immediately after the conditioning session or 10 min before re-exposure to the aversive context. In the conditioning session, rats were exposed to a footshock chamber (context) and footshocks were used as the unconditioned stimulus. Forty-eight hours later, the animals were re-exposed to the aversive context for 10 min, but no shock was given. Behavioral (freezing) as well as cardiovascular (arterial pressure and heart rate increases) responses induced by re-exposure to the aversive context were analysed. It was observed that the local IC neurotransmission inhibition attenuated freezing and the mean arterial pressure and heart rate increase of the groups that received the CoCl2 either immediately after conditioning or 10 min before re-exposure to the aversive context, but not when the CoCl2 was injected before the conditioning session. These findings suggest the involvement of the IC in the consolidation and expression of contextual aversive memory. However, the IC does not seem to be essential for the acquisition of memory associated with aversive context. © 2013 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.
Resumo:
The aim of this study was to evaluate the effects of exercise prior to or during pregnancy on maternal reproductive outcome, biochemical profile, and on fetal anomaly frequency in a rat pregnancy model utilizing chemically induced diabetes. Wistar rats (minimum n = 11 animals/group) were randomly assigned the following groups: group 1 (G1), sedentary, nondiabetic; G2, nondiabetic, exercised during pregnancy; G3, nondiabetic, exercised prior to and during pregnancy; G4, sedentary, diabetic; G5, diabetic, exercised during pregnancy; and G6, diabetic, exercised prior to and during pregnancy. A swimming program was utilized for moderate exercise. On day 21 of pregnancy, all rats were anesthetized to obtain blood for biochemical measurements. The gravid uterus was weighed with its contents, and the fetuses were analyzed. The nondiabetic rats exercised prior to pregnancy presented a reduced maternal weight gain. Besides, G2 and G3 groups showed decreased fetal weights at term pregnancy, indicating slight intrauterine growth restriction (IUGR). In the diabetic dams, the swimming program did not have antihyperglycemic effects. The exercise applied only during pregnancy caused severe IUGR, as confirmed by reduced fetal weight mean, fetal weight classification, and ossification sites. Nevertheless, exercise was not a teratogenic factor and improved the rats' lipid profiles, demonstrating that the exercise presented possible benefits, but there are also risks prior and during pregnancy, especially in diabetic pregnant women. © The Author(s) 2012.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Methylmercury (MeHg) is present in the environment because of natural and anthropogenic causes. MeHg can reach the central nervous system (CNS) and cause neurological damage in humans and animals. Electric organ discharges (EODs) in the weak electric fish Gymnotus sylvius are produced by the electric organ and modulated by the CNS. These discharges are used for electrolocation and communication. The purpose of the present study was to investigate the effects of dietary MeHg exposure on EOD rate in G. sylvius. An oscilloscope was used to record the EOD rate. Two treatments were investigated: chronic MeHg administration (4 μg/kg MeHg every 2 days, with a total of nine dietary exposures to MeHg) and acute MeHg administration (a single dose of 20 μg/kg MeHg). The control data for both treatments were collected every 2 days for 18 days, with a total of nine sessions (day 1 until day 18). Data of fish exposed to MeHg were collected every 2 days, totaling nine sessions (day 19 until day 36). Chronic treatment significantly increased the EOD rate in G. sylvius (p<.05), especially with the final treatment (day 32 until day 36). Acute treatment resulted in an initial increase in the EOD rate, which was maintained midway through the experiment (day 26 until day 30 p<.05). The present study provides the first insights into the effects of MeHg on EODs in weak electric fish. The EOD rate is a novel response of the fish to MeHg administration.