293 resultados para wastes
Resumo:
The increasing environmental concern about chemical surfactants triggers attention to microbial-derived surface-active compounds essentially due to their low toxicity and biodegradable nature. At present, biosurfactants are predominantly used in remediation of pollutants; however, they show potential applications in many sectors of food industry. Associated with emulsion forming and stabilization, antiadhesive and antimicrobial activities are some properties of biosurfactants, which could be explored in food processing and formulation. Potential applications of microbial surfactants in food area and the use of agroindustrial wastes as alternative substrates for their production are discussed.
Resumo:
Micronuclei and nuclear alterations tests were performed on erythrocytes of Oreochromis niloticus (Perciformes, Cichlidae) in order to evaluate the water quality from Paraiba do Sul river, in an area affected by effluents from an oil shale processing plant, located in the city of Sao Jose dos Campos, Brazil-SP. Water samples were collected on 2004 May and August (dry season) and on 2004 November and 2005 January (rain season), in three distinct sites, comprising 12 samples. It was possible to detect substances of clastogenic and/or aneugenic potential, as well as cytotoxic substances, chiefly at the point corresponding to the drainage of oil shale plant wastes along the river. The highest incidence of micronuclei and nuclear alterations was detected during May and August, whereas the results obtained in November and January were insignificant. This work shows that the effluent treatment provided by the oil shale plant was not fully efficient to minimize the effect of cytotoxic and mutagenic substances in the test organism surveyed. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
Pseudomonas strains are able to biosynthesize rhamnose-containing surfactants also known as rhamnolipids. These surface-active compounds are reviewed with respect to chemical structure, properties, biosynthesis, and physiological role, focusing on their production and the use of low-cost substrates such as wastes from food industries as alternative carbon sources. The use of inexpensive raw materials such as agroindustrial wastes is an attractive strategy to reduce the production costs associated with biosurfactant production and, at same time, contribute to the reduction of environmental impact generated by the discard of residues, and the treatment costs. Carbohydrate-rich substrates generated low rhamnolipid levels, whereas oils and lipid-rich wastes have shown excellent potential as alternative carbon sources.
Resumo:
The xylanolytic system of Aspergillus versicolor is controlled by induction and carbon catabolite repression. Carboxymethylcellulose and wheat bran were the best inducers of xylanolytic activity. When the fungus was grown for 5 days on VOGEL's liquid medium with wheat bran, the optimal pH and temperature for xylanase production were 6.5 and 30 degrees C, respectively. Optimal conditions for the xylanolytic activity assay were at pH 6.0 and 55 degrees C. The half-life at 60 degrees C of the crude enzyme was 6.5 and 21 minutes, in the absence or presence of substrate, respectively.Xylan is the main hemicellulosic component of plant biomass being present in appreciable quantities in agricultural and several agroindustrial wastes. From the products of xylan enzymatic hydrolysis it is possible to obtain cell protein, fuels and other chemicals. Xylanases combined with cellulase could have applications in food processing. Cellulase-free xylanases can be also utilized for preparation of cellulose pulps and liberation of textile fibres (WOODWARD 1984; BIELY 1985, WONG et al. 1988). In view of the potential applications of xylanases, a study of these enzymes from various sources and their multiplicity is desirable.Among xylanolytic microorganisms, filamentous fungi have been more extensively studied and the genus Aspergillus has been shown to be an efficient producer of xylanases. Preliminary observations from our laboratory have demonstrated that a strain of Aspergillus versicolor, isolated from Brazilian soil, produced high xylanase and low cellulase levels, which is an interesting characteristic for some industrial applications. In this report we describe the production and some properties of xylanase obtained from this fungus.
Resumo:
Several microorganisms are known to produce a wide variety of surface-active substances, which are referred to as biosurfactants. Interesting examples for biosurfactants are rhamnolipids, glycolipids mainly known from Pseudomonas aeruginosa produced during cultivation on different substrates like vegetable oils, sugars, glycerol or hydrocarbons. However, besides costs for downstream processing of rhamnolipids, relatively high raw-material prices and low productivities currently inhibit potential economical production of rhamnolipids on an industrial scale. This review focuses on cost-effective and sustainable production of rhamnolipids by introducing new possibilities and strategies regarding renewable substrates. Additionally, past and recent production strategies using alternative substrates such as agro-industrial byproducts or wastes are summarized. Requirements and concepts for next-generation rhamnolipid producing strains are discussed and potential targets for strain-engineering are presented. The discussion of potential new strategies is supported by an analysis of the metabolism of different Pseudomonas species. According to calculations of theoretical substrate-to-product conversion yields and current world-market price analysis, different renewable substrates are compared and discussed from an economical point of view. A next-generation rhamnolipid producing strain, as proposed within this review, may be engineered towards reduced formation of byproducts, increased metabolic spectrum, broadened substrate spectrum and controlled regulation for the induction of rhamnolipid synthesis. (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
The production of extracellular cellulase-free xylanase from Trichoderma inhamatum was evaluated in liquid Vogel medium with different carbon sources as natural substrates and agricultural or agro-industrial wastes. Optimal production of 244.02 U/mL was obtained with xylan as carbon source, pH 6.0 at 25 degrees C, 120 rpm, and 60-h time culture. Optimal conditions for enzyme activity were 50 degrees C and pH 5.5. Thermal stability of T. inhamatum xylanolytic complex expressed as T(1/2) was 2.2 h at 40 degrees C and 2 min at 50 degrees C. The pH stability was high from 4.0 to 11.0.These results indicate possible employment of such enzymatic complex in some industrial processes which require activity in acid pH, wide-ranging pH stability, and cellulase activity absence.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Penicillium citrinum grown in orange juice processing wastes medium under continuous agitation was studied in order to establish optimal conditions (incubation period, incubation temperature, initial pH and nitrogen addition) for biomass and ribonuclease production, as well as, biological depuration of the wastes. Nitrogen addition to wastes medium increased the biomass and ribonuclease production and provides COD reduction. The soy meal shows to be the best nitrogen source. The conditions for a more favorable enzyme and biomass production and COD reduction were initial pH 6.0 and temperature of 27°C. The maximum value obtained for these parameters on optimal conditions of cultivation was 11 U/mL of enzyme, 4 mg/mL of biomass (dry matter) and 55% of COD reduction, in 96 hours of incubation.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Este trabalho aborda elementos relativos às dimensões dos valores e da participação política, desenvolvidos por professoras, quando da elaboração de projetos temáticos sobre resíduos sólidos. A análise representa um momento da investigação dos processos de educação continuada de professoras de séries iniciais do Ensino Fundamental, de São Carlos, SP, ao aprender e ensinar conteúdos relativos à temática ambiental, com foco nos resíduos sólidos. Apontamos na discussão dos dados que as professoras freqüentemente não reconhecem os limites da dimensão dos conhecimentos, o que provavelmente dificulta a percepção das possibilidades de desenvolvimento do trabalho com as dimensões dos valores éticos e da participação política. Analisamos, para estas dimensões, alguns aspectos que se destacaram na pesquisa realizada.
Resumo:
O impacto dos resíduos orgânicos agroindustriais no ambiente pode ser reduzido com o seu uso agrícola. do ponto de vista da fertilidade do solo, o que se deseja com a aplicação dos resíduos é aumentar o teor de matéria orgânica e fornecer nutrientes para as plantas. Neste trabalho, objetivou-se avaliar o efeito do lodo biológico de indústria de gelatina em atributos químicos de dois Argissolos Vermelho-Amarelos (PVA-arenoso e PVA-textura média) e de um Latossolo Vermelho (LV-argiloso). O experimento foi conduzido por 120 dias em laboratório, em delineamento inteiramente casualizado e esquema fatorial combinando os três solos e seis doses de lodo (0, 100, 200, 300, 400 e 500 m³ ha-1), com três repetições. A aplicação de até 500 m³ ha-1 de lodo diminui a acidez do solo e aumenta a CTC efetiva e a disponibilidade de N, Ca, Mg e P, sem ultrapassar o limite de tolerância para Na. O aumento do teor de bases, maior do que o da CTC efetiva, indica que a maior parte dos cátions adicionados pelo lodo permanece em solução e pode ser perdida por lixiviação.
Resumo:
The large use of plastics has generated a waste deposit problem. Today plastic wastes represent 20% in volume of the total waste in the municipal landfills. To solve the disposal problem of plastics methods have been employed such as incineration, recycling, landfill disposal, biodegradation and the use of biodegradable polymers. Incineration of plastic wastes provokes pollution due to the production of poisonous gases. Recycling is important to reduce final costs of plastic materials, but is not enough in face of the amount of discarded plastic. In landfills plastic wastes remain undegraded for a long time, causing space and pollution problems. Biodegradation is a feasible method to treat some plastics, but intensive research is necessary to find conditions for the action of microorganisms. All of these methods are important and the practical application of each one depends on the type and amount of the plastic wastes and the environmental conditions. Therefore, a great deal of research has focused on developing biodegradable plastics and its application because it is an important way for minimizing the effect of the large volume of plastic waste discarded in the world.