169 resultados para vector quantization
Resumo:
In this reply to the comment on 'Quantization rules for bound states in quantum wells' we point out some interesting differences between the supersymmetric Wentzel-Kramers-Brillouin (WKB) quantization rule and a matrix generalization of usual WKB (mWKB) and Bohr-Sommerfeld (mBS) quantization rules suggested by us. There are certain advantages in each of the supersymmetric WKB (SWKB), mWKB and mBS quantization rules. Depending on the quantum well, one of these could be more useful than the other and it is premature to claim unconditional superiority of SWKB over mWKB and mBS quantization rules.
Resumo:
We show that the usual vector meson dominance method does not apply directly to the mixing of a color-octet vector boson (color-octet technirho) with the gluon because of gauge invariance. We propose a gauge invariant method where one works in a physical basis with mass eigenstate fields, As a result, we show that the physical technirho does not couple to two gluons, contrary to the general belief, Consequences for the production of a pair of color-octet, isosinglet technipions (technietas) at Fermilab is analyzed by means of a simulation of the signal and background, including kinematical cuts. We find that the signal is too small to be observed. (C) 2001 Published by Elsevier B.V. B.V.
Resumo:
We investigate some proposals to solve the electric charge quantization puzzle that simultaneously explain the recent measured deviation on the muon anomalous magnetic moment. For this we assess extensions of the electro-weak standard model spanning modifications on the scalar sector only. It is interesting to verify that one can have modest extensions which easily account for the solution for both problems.
Resumo:
Neutrino oscillations are treated from the point of view of relativistic first quantized theories and compared to second quantized treatments. Within first quantized theories, general oscillation probabilities can be found for Dirac fermions and charged spin 0 bosons. A clear modification in the oscillation formulas can be obtained and its origin is elucidated and confirmed to be inevitable from completeness and causality requirements. The left-handed nature of created and detected neutrinos can also be implemented in the first quantized Dirac theory in the presence of mixing; the probability loss due to the changing of initially left-handed neutrinos to the undetected right-handed neutrinos can be obtained in analytic form. Concerning second quantized approaches, it is shown in a calculation using virtual neutrino propagation that both neutrinos and antineutrinos may also contribute as intermediate particles. The sign of the contributing neutrino energy may have to be chosen explicitly without being automatic in the formalism. At last, a simple second quantized description of the flavor oscillation phenomenon is devised. In this description there is no interference terms between positive and negative components, but it still gives simple normalized oscillation probabilities. A new effect appearing in this context is an inevitable but tiny violation of the initial flavor of neutrinos. The probability loss due to the conversion of left-handed neutrinos to right-handed neutrinos is also presented.
Resumo:
In the context of the teleparallel equivalent of general relativity, we obtain the tetrad and the torsion fields of the stationary axisymmetric Kerr spacetime. It is shown that, in the slow rotation and weak-field approximations, the axial-vector torsion plays the role of the gravitomagnetic component of the gravitational field, and is thus responsible for the Lense-Thirring effect.
Resumo:
A general construction of affine nonabelian (NA)-Toda models in terms of the axial and vector gauged two loop WZNW model is discussed. They represent integrable perturbations of the conformal sigma -models (with tachyons included) describing (charged) black hole type string backgrounds. We study the off-critical T-duality between certain families of axial and vector type integrable models for the case of affine NA-Toda theories with one global U(1) symmetry. In particular we find the Lie algebraic condition defining a subclass of T-selfdual torsionless NA-Toda models and their zero curvature representation. (C) 2001 Academic Press.
Resumo:
After reviewing the Green-Schwarz superstring using the approach of Siegel, the superstring is covariantly quantized by constructing a BRST operator from the fermionic constraints and a bosonic pure spinor ghost variable. Physical massless vertex operators are constructed and, for the first time, N-point tree amplitudes are computed in a manifestly ten-dimensional super-Poincare covariant manner. Quantization can be generalized to curved supergravity backgrounds and the vertex operator for fluctuations around AdS(5) x S-5 is explicitly constructed.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
The pipe flow of a viscous-oil-gas-water mixture such as that involved in heavy oil production is a rather complex thereto-fluid dynamical problem. Considering the complexity of three-phase flow, it is of fundamental importance the introduction of a flow pattern classification tool to obtain useful information about the flow structure. Flow patterns are important because they indicate the degree of mixing during flow and the spatial distribution of phases. In particular, the pressure drop and temperature evolution along the pipe is highly dependent on the spatial configuration of the phases. In this work we investigate the three-phase water-assisted flow patterns, i.e. those configurations where water is injected in order to reduce friction caused by the viscous oil. Phase flow rates and pressure drop data from previous laboratory experiments in a horizontal pipe are used for flow pattern identification by means of the 'support vector machine' technique (SVM).