70 resultados para thrombocyte adhesion


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study evaluated the potential of plasma treatments to modify the surface chemistry and hydrophobicity of a denture base acrylic resin to reduce the Candida glabrata adhesion. Specimens (n=54) with smooth surfaces were made and divided into three groups (n=18): control - non-treated; experimental groups - submitted to plasma treatment (Ar/50W; AAt/130W). The effects of these treatments on chemical composition and surface topography of the acrylic resin were evaluated. Surface free energy measurements (SFE) were performed after the treatments and after 48h of immersion in water. For each group, half (n=9) of the specimens were preconditionated with saliva before the adhesion assay. The number of adhered C. glabrata was evaluated by cell counting after crystal violet staining. The Ar/50W and AAt/130W treatments altered the chemistry composition, hydrophobicity and topography of acrylic surface. The Ar/50W group showed significantly lower C. glabrata adherence than the control group, in the absence of saliva. After preconditioning with saliva, C. glabrata adherence in experimental and control groups did not differ significantly. There were significant changes in the SFE after immersion in water. The results demonstrated that Ar/50W treated surfaces have potential for reducing C. glabrata adhesion to denture base resins and deserve further investigation, especially to tailor the parameters to prolong the increased wettability. © 2012 Blackwell Verlag GmbH.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Purpose: Adhesive cementation is an important step for restorations made of feldspathic ceramic as it increases the strength of such materials. Incorrect selection of the adhesive resin and the resin cement to adhere to the ceramic surface and their durability against aging can affect the adhesion between these materials and the clinical performance. This study evaluated the effect of adhesive resins with different pHs, resin cements with different polymerization modes, and aging on the bond strength to feldspathic ceramic. Materials and Methods: One surface of feldspathic ceramic blocks (VM7) (N = 90) (6.4 × 6.4 × 4.8 mm3) was conditioned with 10% hydrofluoric acid for 20 seconds, washed/dried, and silanized. Three adhesive resins (Scotchbond Multi-Purpose Plus [SBMP], pH: 5.6; Single Bond [SB], pH: 3.4; and Prime&Bond NT [NT], pH: 1.7) were applied on the ceramic surfaces (n = 30 per adhesive). For each adhesive group, three resin cements with different polymerization modes were applied (n = 10 per cement): photo-polymerized (Variolink II base), dual polymerized (Variolink II base + catalyst), and chemically polymerized (C&B). The bonded ceramic blocks were stored in water (37°C) for 24 hours and sectioned to produce beam specimens (cross-sectional bonded area: 1 ± 0.1 mm2). The beams of each block were randomly divided into two conditions: Dry, microtensile test immediately after cutting; TC, test was performed after thermocycling (12,000×, 5°C to 55°C) and water storage at 37°C for 150 days. Considering the three factors of the study (adhesive [3 levels], resin cement [3 levels], aging [2 levels]), 18 groups were studied. The microtensile bond strength data were analyzed using 3-way ANOVA and Tukey's post hoc test (α= 0.05). Results: Adhesive resin type (p < 0.001) and the resin cement affected the mean bond strength (p= 0.0003) (3-way ANOVA). The NT adhesive associated with the chemically polymerized resin cement in both dry (8.8 ± 6.8 MPa) and aged conditions (6.9 ± 5.9 MPa) presented statistically lower bond strength results, while the SBMP adhesive resin, regardless of the resin cement type, presented the highest results (15.4 to 18.5 and 14.3 to 18.9 MPa) in both dry and aged conditions, respectively (Tukey's test). Conclusion: Application of a low-pH adhesive resin onto a hydrofluoric acid etched and silanized feldspathic ceramic surface in combination with chemically polymerized resin cement did not deliver favorable results. The use of adhesive resin with high pH could be clinically advised for the photo-, dual-, and chemically polymerized resin cements tested. © 2012 by the American College of Prosthodontists.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

E-cadherin and beta-catenin are component of adherens junctions in epithelial cells. Loss of these proteins have been associated with progression of prostatic diseases. We performed immunohistochemistry for E-cadherin, beta-catenin and Ki-67 on canine prostatic lesions. We analyzed the expression of these antibodies in benign prostatic hyperplasia (BPH, n = 22), in pre neoplastic lesions Prostatic Intra-epithelial Neoplasia (PIN), n = 3 and Prostatic Inflammatory Atrophy (PIA), n = 7 and prostate carcinoma (PC, n = 10). In this study, a membranous expression of E-cadherin and beta-catenin and nuclear expression of Ki-67 antigen were demonstrated. The proliferative index was statistically different between carcinomas and BPH and carcinomas and pre-neoplastic lesions. Like in men, the reduction of E-cadherin and increase of Ki-67 expression in neoplastic lesions in dog prostate may be related to the carcinogenic process in this gland. © 2013 Asian Network for Scientific Information.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study evaluated the influence of deposition parameters for Si-based thin films using magnetron sputtering for coating zirconia and subsequent adhesion of resin cement. Zirconia ceramic blocks were randomly divided into 8 groups and specimens were either ground finished and polished or conditioned using air-abrasion with alumina particles coated with silica. In the remaining groups, the polished specimens were coated with Si-based film coating with argon/oxygen magnetron discharge at 8:1 or 20:1 flux. In one group, Si-based film coating was performed on air-abraded surfaces. After application of bonding agent, resin cement was bonded. Profilometry, goniometry, Energy Dispersive X-ray Spectroscopy and Rutherford Backscattering Spectroscopy analysis were performed on the conditioned zirconia surfaces. Adhesion of resin cement to zirconia was tested using shear bond test and debonded surfaces were examined using Scanning Electron Microscopy. Si-based film coating applied on air-abraded rough zirconia surfaces increased the adhesion of the resin cement (22.78 ± 5.2 MPa) compared to those of other methods (0-14.62 MPa) (p = 0.05). Mixed type of failures were more frequent in Si film coated groups on either polished or air-abraded groups. Si-based thin films increased wettability compared to the control group but did not change the roughness, considering the parameters evaluated. Deposition parameters of Si-based thin film and after application of air-abrasion influenced the initial adhesion of resin cement to zirconia. © 2013 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study compared the effect of physicochemical surface conditioning methods on the adhesion of bis-GMA-based resin cement to particulate filler composite (PFC) used for indirect dental restorations. PFC blocks (N (block)=54, n (block)=9 per group) were polymerized and randomly subjected to one of the following surface conditioning methods: a) No conditioning (Control-C), b) Hydrofluoric acid (HF)etching for 60s (AE60), c) HF for 90s (AE90), d) HF for 120s (AE120), e) HF for 180s (AE180), and f) air-abrasion with 30 mu m silica-coated alumina particles (AB). The conditioned surfaces were silanized with an MPS silane, and an adhesive resin was applied. Resin composite blocks were bonded to PFC using resin cement and photo-polymerized. PFC-cement-resin composite blocks were cut under coolant water to obtain bar specimens (1mmx0.8mm). Microtensile bond strength test (mu TBS)was performed in a universal testing machine (1mm/min). After debonding, failure modes were classified using stereomicroscopy. Surface characterization was performed on a set of separate specimen surfaces using Scanning Electron Microscopy (SEM), X-Ray Dispersive Spectroscopy (XDS), X-Ray Photoelectron Spectroscopy (XPS), and Fourier Transform-Raman Spectroscopy (FT-RS). Mean mu TBS (MPa) of C (35.6 +/- 4.9) was significantly lower than those of other groups (40.2 +/- 5.6-47.4 +/- 6.1) (p<0.05). The highest mu TBS was obtained in Group AB (47.4 +/- 6.1). Prolonged duration of HF etching increased the results (AE180: 41.9 +/- 7), but was not significantly different than that of AB (p>0.05). Failure types were predominantly cohesive in PFC (34 out of 54) followed by cohesive failure in the cement (16 out of 54). Degree of conversion (DC) of the PFC was 63 +/- 10%. SEM analysis showed increased irregularities on PFC surfaces with the increased etching time. Chemical surface analyses with XPS and FT-RS indicated 11-70% silane on the PFC surfaces that contributed to improved bond strength compared to Group C that presented 5% silane, which seemed to be a threshold. Group AB displayed 83% SiO2 and 17% silane on the surfaces.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study evaluated the effect of intermediate adhesive resin application (IAR) on tensile bond strength (TBS) for early composite repairs in situations where substrate and repair composite bonded together were once of the same kind with the substrate (similar) and once other than the substrate material (dissimilar). Specimens from three types of composites (TPH Spectrum (TPH), Charisma (CHA) and Filtek Z250 (Z250)) were fabricated. The specimens in each composite group (n=72) were randomly divided into six subgroups (n=12). In each composite group, the similar and two dissimilar composites were bonded onto the substrates once using an IAR (Adper Single Bond Plus) and once without. After water storage for I week at 37 degrees C, substrate-adherent combinations were submitted to tensile test. Data were analyzed with three-way ANOVA and Tukey's tests (alpha=0.05). The substrate-adherent combination (p=0.0001), adherent (repair) composite (p=0.0001), and application of IAR (p=0.0001) significantly affected the results. Utilization of IAR improved the repair bond strength for all composite combinations. (C) 2013 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Purpose: To evaluate the influence of heat treatment (HT) procedures of a pre-hydrolyzed silane on bond strength of resin cement to a feldspathic ceramic.Materials and Methods: Ceramic and composite blocks (N = 30) were divided into six groups (n = 5) and subjected to the following conditioning procedures: G1: 9.6% hydrofluoric acid (HF) for 20 s + silane (RelyX Ceramic Primer, 3M ESPE) + resin cement (Panavia F2.0, Kuraray) (control); G2: HF (20 s) + silane + heat treatment in furnace (HTF) (100 degrees C, 2 min) + resin cement; G3: silane + HTF + resin cement; G4-HF (20 s) + silane + heat treatment with hot air (HTA) (50 +/- 5 degrees C for 1 min) + resin cement; G5: silane + HTA + resin cement; G6: silane + resin cement. The microtensile bond strength (MTBS) test was performed using a universal testing machine (1 mm/min). After debonding, the substrate and adherent surfaces were analyzed using a stereomicroscope and SEM to categorize the failure types. The data were statistically evaluated using one-way ANOVA and Tukey's test (5%).Results: The control group (G1) showed no pre-test failures and presented significantly higher mean MTBS (16.01 +/- 1.12 MPa) than did other groups (2.63 +/- 1.05 to 12.55 +/- 1.52 MPa) (p = 0.0001). In the groups where HF was not used, HTF (G3: 12.55 +/- 1.52 MPa) showed significantly higher MTBS than did HTA (G5: 2.63 +/- 1.05 MPa) (p < 0.05). All failure types were mixed, ie, adhesive between the resin cement and ceramic accompanied by cohesive failure in the cement.Conclusion: Heat treatment procedures for the pre-hydrolyzed silane either in a furnace or with the application of hot air cannot replace the use of HF gel for the adhesion of resin cement to feldspathic ceramic. Yet when mean bond strengths and incidence of pre-test failures are considered, furnace heat treatment delivered the second best results after the control group, being considerably better than hot air application.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Purpose: To evaluate the effect of post-silanization heat treatment of a silane agent and rinsing with hot water of silanized CAD/CAM feldspathic ceramic surfaces on the microtensile bond strength between resin cement and the ceramic, before and after mechanical cycling.Materials and Methods: Blocks measuring 10 x 5.7 x 3.25 mm(3) were produced from feldspathic ceramic cubes (VITA Mark II, VITA Zanhfabrik). Each ceramic block was duplicated in composite resin using a template made of polyvinylsiloxane impression material. Afterwards, ceramic and corresponding resin composite blocks were ultrasonically cleaned and randomly divided according to the 5 strategies used for conditioning the ceramic surface (n = 10): GHF: etching with hydrofluoric acid 10% + rinsing with water at room temperature + silanization at 20 degrees C; G20: silanization; G77: silanization + oven drying at 77 degrees C; G20r: silanization + hot water rinsing; G77r: silanization + oven drying at 77 C + hot water rinsing. The resin and ceramic blocks were cemented using a dual-curing resin cement. Every group was divided in two subgroups: aging condition (mechanical cycling, designated as a) or non-aging (designated as n). All the bonded assemblies were sectioned into microsticks for microtensile bond strength (mu TBS) testing. The failure mode of the tested specimens was assessed and mu TBS data were statistically analyzed in two ways: first 2-way ANOVA (GHF, G20 and G77 in non-aging/aging conditions) and 3-way ANOVA (temperature x rinsing x aging factors, excluding GHF), followed by Tukey's test (p = 0.05).Results: The 2-way ANOVA revealed that the mu TBS was significantly affected by the surface treatment (p < 0.001) but not by aging (p = 0.68), and Tukey's test showed that G77-n/G77-a (18.0 MPa) > GHF-n/GHF-a (12.2 MPa) > G20-n/G20-a (9.1 MPa). The 3-way ANOVA revealed that the mu TBS was significantly affected by the heat treatment and rinsing factors (p < 0.001), but not affected by aging (p = 0.36). The rinsing procedure decreased, while oven drying increased the bond strengths. Group G77, in both non-aging and aging conditions (18.6-17.4 MPa), had the highest bond values. Failure modes were mainly mixed for all groups.Conclusion: Oven drying at 77 degrees C improved the bond strength between the resin cement and feldspathic ceramic, but hot water rinsing reduced the bond strength and should not be recommended.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objectives: This study evaluated the influence of air-particle abrasion protocols on the surface roughness (SR) of zirconia and the shear bond strength (SBS) of dual-polymerized resin cement to this ceramic. Materials and methods. Sintered zirconia blocks (n = 115) (Lava, 3M ESPE) were embedded in acrylic resin and polished. The specimens were divided according to the 'particle type' (Al: 110 mu m Al2O3; Si: 110 mu m SiO2) and 'pressure' factors (2.5 or 3.5 bar) (n = 3 per group): (a) Control (no air-abrasion); (b) Al2.5; (c) Si2.5; (d) Al3.5; (e) Si3.5. SR (Ra) was measured 3-times from each specimen after 20 s of air-abrasion (distance: 10 mm) using a digital optical profilometer. Surface topography was evaluated under SEM analyses. For the SBS test, 'particle type', 'pressure' and 'thermocycling' (TC) factors were considered (n = 10; n = 10 per group): Control (no air-abrasion); Al2.5; Si2.5; Al3.5; Si3.5; Control(TC); Al2.5(TC); Si2.5(TC); Al3.5(TC); Si3.5(TC). After silane application, resin cement (Panavia F2.0) was bonded and polymerized. Specimens were thermocycled (6.000 cycles, 5-55 degrees C) and subjected to SBS (1 mm/min). Data were analyzed using ANOVA, Tukey's and Dunnett tests (5%). Results. 'Particle' (p = 0.0001) and 'pressure' (p = 0.0001) factors significantly affected the SR. All protocols significantly increased the SR (Al2.5: 0.45 +/- 0.02; Si2.5: 0.39 +/- 0.01; Al3.5: 0.80 +/- 0.01; Si3.5: 0.64 +/- 0.01 mu m) compared to the control group (0.16 +/- 0.01 mu m). For SBS, only 'particle' factor significantly affected the results (p = 0.015). The SiO2 groups presented significantly higher SBS results than Al2O3 (Al2.5: 4.78 +/- 1.86; Si2.5: 7.17 +/- 2.62; Al3.5: 4.97 +/- 3.74; Si3.5: 9.14 +/- 4.09 MPa) and the control group (3.67 +/- 3.0 MPa). All TC specimens presented spontaneous debondings. SEM analysis showed that Al2O3 created damage in zirconia in the form of grooves, different from those observed with SiO2 groups. Conclusions. Air-abrasion with 110 mu m Al2O3 resulted in higher roughness, but air-abrasion protocols with SiO2 promoted better adhesion.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)