65 resultados para the arousal theory
Resumo:
Modal analysis is widely approached in the classic theory of transmission line modeling. This technique is applied to model the three-phase representation of conventional electric systems taking into account their self and mutual electrical parameters. However the methodology has some particularities and inaccuracies for specific applications which are not clearly described in the basic references of this topic. This paper provides a thorough review of modal analysis theory applied to line models followed by an original and simple procedure to overcome the possible errors embedded in the modal decoupling through the three-phase system modeling. © 2012 IEEE.
Resumo:
Modal analysis is widely approached in the classic theory of power systems modelling. This technique is also applied to model multiconductor transmission lines and their self and mutual electrical parameters. However, this methodology has some particularities and inaccuracies for specific applications, which are not clearly described in the technical literature. This study provides a brief review on modal decoupling applied in transmission line digital models and thereafter a novel and simplified computational routine is proposed to overcome the possible errors embedded by the modal decoupling in the simulation/ modelling computational algorithm. © The Institution of Engineering and Technology 2013.
Resumo:
This work comprises a study upon the quantization and the renormalizability of the generalized electrodynamics of spinless charged particles (mesons), namely, the generalized scalar electrodynamics (GSQED4). The theory is quantized in the covariant framework of the Batalin-Fradkin-Vilkovisky method. Thereafter, the complete Green's functions are obtained through functional methods and a proper discussion on the theory's renormalizability is also given. Next, we present the computation and further discussion on the radiative correction at α order; and, as it turns out, an unexpected mP-dependent divergence on the mesonic sector of the theory is found. Furthermore, in order to show the effectiveness of the renormalization procedure on the present theory, we also give a diagrammatic discussion on the photon self-energy at α2 order, where we observe contributions from the meson self-energy function. Afterwards, we present the expressions of the counterterms and effective coupling of the theory, obtaining from the latter an energy range where the theory is defined by m2≤k2
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Vertex operators in string theory me in two varieties: integrated and unintegrated. Understanding both types is important for the calculation of the string theory amplitudes. The relation between them is a descent procedure typically involving the b-ghost. In the pure spinor formalism vertex operators can be identified as cohomology classes of an infinite-dimensional Lie superalgebra formed by covariant derivatives. We show that in this language the construction of the integrated vertex from an unintegrated vertex is very straightforward, and amounts to the evaluation of the cocycle on the generalized Lax currents.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Let G be a group, W a nonempty G-set and M a Z2G-module. Consider the restriction map resG W : H1(G,M) → Pi wi∈E H1(Gwi,M), [f] → (resGG wi [f])i∈I , where E = {wi, i ∈ I} is a set of orbit representatives in W and Gwi = {g ∈ G | gwi = wi} is the G-stabilizer subgroup (or isotropy subgroup) of wi, for each wi ∈ E. In this work we analyze some results presented in Andrade et al [5] about splittings and duality of groups, using the point of view of Dicks and Dunwoody [10] and the invariant E'(G,W) := 1+dimkerresG W, defined when Gwi is a subgroup of infinite index in G for all wi in E, andM = Z2 (where dim = dimZ2). We observe that the theory of splittings of groups (amalgamated free product and HNN-groups) is inserted in the combinatory theory of groups which has many applications in graph theory (see, for example, Serre [12] and Dicks and Dunwoody [10]).
Resumo:
In this paper, we analyse several contributions made concerning investment theory in the last decades. The objective of the paper is to discuss the difficulties of the testable theory identified by Chirinko (1983), Fazzari et al. (1988, 2000), Kaplan and Zingales (1997) and Hubbard (1998) to better understand the results of empirical approach. These few authors we worked with provided theoretical arguments and empirical evidences that internal finance variable of the firms may work as an indicator of financial constraint. In several developed countries, financing constraints has been identified as important to understand the investment spending. The principal indicator of financing constraints, that is, cash-flow has been questioned. However, the evidences offer a support to its relevance. We try to justify such evidence based on the few authors listed above, which have been quoted by empirical works. We try to contribute to debate adding aspect of the corporate finance to offer a logical explanation to econometric difficulties.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The linearity assumption in the structural dynamics analysis is a severe practical limitation. Further, in the investigation of mechanisms presented in fighter aircrafts, as for instance aeroelastic nonlinearity, friction or gaps in wing-load-payload mounting interfaces, is mandatory to use a nonlinear analysis technique. Among different approaches that can be used to this matter, the Volterra theory is an interesting strategy, since it is a generalization of the linear convolution. It represents the response of a nonlinear system as a sum of linear and nonlinear components. Thus, this paper aims to use the discrete-time version of Volterra series expanded with Kautz filters to characterize the nonlinear dynamics of a F-16 aircraft. To illustrate the approach, it is identified and characterized a non-parametric model using the data obtained during a ground vibration test performed in a F-16 wing-to-payload mounting interfaces. Several amplitude inputs applied in two shakers are used to show softening nonlinearities presented in the acceleration data. The results obtained in the analysis have shown the capability of the Volterra series to give some insight about the nonlinear dynamics of the F-16 mounting interfaces. The biggest advantage of this approach is to separate the linear and nonlinear contributions through the multiple convolutions through the Volterra kernels.
Resumo:
We examine, from both the experimental and theoretical point of view, the behavior of the maximum splitting ΔE, of the 7F1 manifold of the Eu3+ ion as a function of the so-called crystal field strength parameter, Nv, in a series of oxides. In connection with the original theory that describes the relation between ΔE and Nv, a more consistent procedure to describe this relation is presented for the cases of small total angular momentum J. Good agreement is found between theory and experiment. © 1995.