121 resultados para the arc welding
Resumo:
Intending to achieve better results on coffee production, the coffee producers began, since the 80s, to process the coffee postharvest, in order to ensure product's superior quality. However, with the processing, other problem appeared, the contamination of rivers, creeks, soil and water table from coffee wastewater (ARC). This paper had as main objective to use the ARC on the coffee plants' production verifying its viability and if the ARC is able to supply the coffee potassium requirements when they don't receive potassium chloride in the organic compound. The work was developed at Faculdade de Ciências Agronômicas - UNESP, Botucatu-SP, in a greenhouse located at Departamento de Engenharia Rural. The work consisted of 10 treatments on a 5×2 factorial (5 wastewater proportions of coffee after the harvest processing - 0%, 25%, 50%, 75% and 100% - and potassium chloride presence or absence in the composition), with 4 repetitions with a completely randomized statistical design. The ARC was applied each 48 hours in an irrigation depth of 10 mm. After 6 months, the plants' vegetative characteristic had been evaluated as well the chemical characteristics of the compound and of the plants. We observed that the treatments with potassium chloride presence showed worse vegetative characteristics compared with treatments which did not have KCl in its composition. Moreover, with the increase of the wastewater dosage, it happened a decrease in the vegetative characteristics, however an addition in the chemical characteristics of the compound. Also, the treatments without KCl presence and with 0% and 25% of coffee wastewater had been statistically equal, showing the viability in the use of the ARC in the production of coffee plants, since the compound does not contain KCl and that the water used in the composition is a mixture of 25% of ARC with 75% of common water.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Odontologia Restauradora - ICT
Resumo:
The automobile industry is increasingly interested in reducing vehicle weight for greater speed, lower fuel consumption and emissions, through innovation of materials and processes. One way to do this is to seek the replacement of conventional processes by the use of structural adhesives. Structural adhesives are highly resistant materials, which can replace rivets, bolts and welds allowing the substrate / adhesive assemble is stronger than the substrate itself. One of the major advantages of gluing with respect to welding is its esthetic appearance, since it does not leave marks. For this reason, parts to be soldered require a minimum thickness so that the marks do not appear, since the pieces from gluing have no restriction as to the thickness. By replacing the vibration welding process for gluing process of the instrument panel parts of an automobile, one obtains a reduction of the thickness of the parts and therefore it decreases the weight of the car. This work aims to study the various structural adhesives that already exist on the market to be applied on the instrument panel. The mechanical test performed to measure the maximum adhesive strength was the Lap Shear Test at 23°C (room temperature), -35°C and 85°C. The types of adhesives used were the hot-melt and the bi-component. By the results obtained, it is in favor using the bi-component for application to the union of instrument panel parts
Resumo:
Titanium and its alloys has been widely used as materials for metallic biomaterials implants are usually employed to restore the hard tissue function, being used for artificial joints and bones, synthetic plates, crowns, dental implants and screws . Objective of this work was the surface modification of Ti-alloy 25Ta from biomimetic surface treatment of employment and deposition of polymer by electrospinning. The league was obtained from the fusion of the pure elements in the arc furnace with controlled atmosphere. The ingots were subjected to heat treatment, cold forged and sectioned discs with 13 mm diameter and 3 mm thick. Two surface treatments was evaluated, biomimetic and electrospinning with PCL fiber. The biomimetic treatment was performed involving alkaline treatment for three molarities 1.5M, 3M and 5M with immersion in SBF. The electrospinning was performed using PCL polymer alloy surface after the alkali treatment Ti25Ta 1M. For this group the polymer coated surfaces were immersed in calcium phosphate containing solution for immobilization of apatite. The results were compared with previous studies using surface treatment group to verify hydroxyapatite formation on the sample surface and it is concluded that the best condition is biomimetic treatment with 5M alkali treatment and heat treatment at 80 ° C for 72 hours
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Pós-graduação em Ciência e Tecnologia de Materiais - FC
Resumo:
Pós-graduação em Engenharia Mecânica - FEG
Resumo:
This study aims to evaluate the corrosion resistance of Ti-30Ta alloy when subjected to different strain rates. Samples of the alloy Ti-30Ta were obtained from the melting of pure elements in the arc furnace in inert atmosphere (argon gas). Then, the samples were subjected to a thermal treatment and to cold worked to obtain bars. After forging, the samples were machined in accordance with ASTME9-09 standard for carried out compression tests. To microstructural characterization, samples were sectioned longitudinal and transversally and embedded in resin. After, the wet sanding and polishing were performed, followed by a chemical attack, in order to study the microstructure under an optical microscope. Microhardness was measured on the samples that were subjected to microstructural characterization by using microhardness tester. Phases were evaluated by x-rays diffraction. Corrosion tests were carried out to evaluate the influence of deformation on the corrosion resistance. Results show that microstructure was not influenced by deformation
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)