56 resultados para test de Monte Carlo


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Purpose - The purpose of this paper is to present designs for an accelerated life test (ALT). Design/methodology/approach - Bayesian methods and simulation Monte Carlo Markov Chain (MCMC) methods were used. Findings - In the paper a Bayesian method based on MCMC for ALT under EW distribution (for life time) and Arrhenius models (relating the stress variable and parameters) was proposed. The paper can conclude that it is a reasonable alternative to the classical statistical methods since the implementation of the proposed method is simple, not requiring advanced computational understanding and inferences on the parameters can be made easily. By the predictive density of a future observation, a procedure was developed to plan ALT and also to verify if the conformance fraction of the manufactured process reaches some desired level of quality. This procedure is useful for statistical process control in many industrial applications. Research limitations/implications - The results may be applied in a semiconductor manufacturer. Originality/value - The Exponentiated-Weibull-Arrhenius model has never before been used to plan an ALT. © Emerald Group Publishing Limited.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This paper presents an approach for probabilistic analysis of unbalanced three-phase weakly meshed distribution systems considering uncertainty in load demand. In order to achieve high computational efficiency this approach uses both an efficient method for probabilistic analysis and a radial power flow. The probabilistic approach used is the well-known Two-Point Estimate Method. Meanwhile, the compensation-based radial power flow is used in order to extract benefits from the topological characteristics of the distribution systems. The generation model proposed allows modeling either PQ or PV bus on the connection point between the network and the distributed generator. In addition allows control of the generator operating conditions, such as the field current and the power delivery at terminals. Results on test with IEEE 37 bus system is given to illustrate the operation and effectiveness of the proposed approach. A Monte Carlo Simulations method is used to validate the results. © 2011 IEEE.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Distributed Generation, microgrid technologies, two-way communication systems, and demand response programs are issues that are being studied in recent years within the concept of smart grids. At some level of enough penetration, the Distributed Generators (DGs) can provide benefits for sub-transmission and transmission systems through the so-called ancillary services. This work is focused on the ancillary service of reactive power support provided by DGs, specifically Wind Turbine Generators (WTGs), with high level of impact on transmission systems. The main objective of this work is to propose an optimization methodology to price this service by determining the costs in which a DG incurs when it loses sales opportunity of active power, i.e, by determining the Loss of Opportunity Costs (LOC). LOC occur when more reactive power is required than available, and the active power generation has to be reduced in order to increase the reactive power capacity. In the optimization process, three objectives are considered: active power generation costs of DGs, voltage stability margin of the system, and losses in the lines of the network. Uncertainties of WTGs are reduced solving multi-objective optimal power flows in multiple probabilistic scenarios constructed by Monte Carlo simulations, and modeling the time series associated with the active power generation of each WTG via Fuzzy Logic and Markov Chains. The proposed methodology was tested using the IEEE 14 bus test system with two WTGs installed. © 2011 IEEE.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In this paper the point estimation method is applied to solve the probabilistic power flow problem for unbalanced three-phase distribution systems. Through the implementation of this method the probability distribution functions of voltages (magnitude and angle) as well as the active and reactive power flows in the branches of the distribution system are determined. Two different approaches of the point estimation method are presented (2m and 2m+1 point schemes). In order to test the proposed methodology, the IEEE 34 and 123 bus test systems are used. The results obtained with both schemes are compared with the ones obtained by a Monte Carlo Simulation (MCS).

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The use of QoS parameters to evaluate the quality of service in a mesh network is essential mainly when providing multimedia services. This paper proposes an algorithm for planning wireless mesh networks in order to satisfy some QoS parameters, given a set of test points (TPs) and potential access points (APs). Examples of QoS parameters include: probability of packet loss and mean delay in responding to a request. The proposed algorithm uses a Mathematical Programming model to determine an adequate topology for the network and Monte Carlo simulation to verify whether the QoS parameters are being satisfied. The results obtained show that the proposed algorithm is able to find satisfactory solutions.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Traditionally, ancillary services are supplied by large conventional generators. However, with the huge penetration of distributed generators (DGs) as a result of the growing interest in satisfying energy requirements, and considering the benefits that they can bring along to the electrical system and to the environment, it appears reasonable to assume that ancillary services could also be provided by DGs in an economical and efficient way. In this paper, a settlement procedure for a reactive power market for DGs in distribution systems is proposed. Attention is directed to wind turbines connected to the network through synchronous generators with permanent magnets and doubly-fed induction generators. The generation uncertainty of this kind of DG is reduced by running a multi-objective optimization algorithm in multiple probabilistic scenarios through the Monte Carlo method and by representing the active power generated by the DGs through Markov models. The objectives to be minimized are the payments of the distribution system operator to the DGs for reactive power, the curtailment of transactions committed in an active power market previously settled, the losses in the lines of the network, and a voltage profile index. The proposed methodology was tested using a modified IEEE 37-bus distribution test system. © 1969-2012 IEEE.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Pós-graduação em Agronomia (Energia na Agricultura) - FCA

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This study aimed to model a equation for the demand of automobiles and light commercial vehicles, based on the data from February 2007 to July 2014, through a multiple regression analysis. The literature review consists of an information collection of the history of automotive industry, and it has contributed to the understanding of the current crisis that affects this market, which consequence was a large reduction in sales. The model developed was evaluated by a residual analysis and also was used an adhesion test - F test - with a significance level of 5%. In addition, a coefficient of determination (R2) of 0.8159 was determined, indicating that 81.59% of the demand for automobiles and light commercial vehicles can be explained by the regression variables: interest rate, unemployment rate, broad consumer price index (CPI), gross domestic product (GDP) and tax on industrialized products (IPI). Finally, other ten samples, from August 2014 to May 2015, were tested in the model in order to validate its forecasting quality. Finally, a Monte Carlo Simulation was run in order to obtain a distribution of probabilities of future demands. It was observed that the actual demand in the period after the sample was in the range that was most likely to occur, and that the GDP and the CPI are the variable that have the greatest influence on the developed model