135 resultados para system stability
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Solos submetidos ao mesmo sistema de manejo manifestam variabilidade espacial diferenciada de seus atributos. A variabilidade espacial da estabilidade de agregados foi caracterizada em um Latossolo Vermelho distrófico e Latossolo Vermelho eutroférrico, sob cultivo de cana-de-açúcar. Foram realizadas amostragens de terra nos pontos de interseção de uma malha de 10 x 10 linhas, espaçadas de 10 m, totalizando 100 pontos de amostragem por área, coletadas nas camadas de 0,0-0,2 e 0,2-0,4 m de profundidade, para determinação de diâmetro médio geométrico (DMG), diâmetro médio ponderado (DMP), agregados na classe >2,0 mm e teor de matéria orgânica do solo. O Latossolo Vermelho eutroférrico apresenta maior estabilidade de agregados quando comparado com o Latossolo Vermelho distrófico, condizente com o maior teor de argila, matéria orgânica e mineralogia gibbsítica. A evolução diferenciada dos Latossolos estudados explica os maiores alcances, o menor coeficiente de variação (CV) e a menor variabilidade, observados no Latossolo Vermelho eutroférrico para todos os atributos estudados.
Stochastic stability for Markovian jump linear systems associated with a finite number of jump times
Resumo:
This paper deals with a stochastic stability concept for discrete-time Markovian jump linear systems. The random jump parameter is associated to changes between the system operation modes due to failures or repairs, which can be well described by an underlying finite-state Markov chain. In the model studied, a fixed number of failures or repairs is allowed, after which, the system is brought to a halt for maintenance or for replacement. The usual concepts of stochastic stability are related to pure infinite horizon problems, and are not appropriate in this scenario. A new stability concept is introduced, named stochastic tau-stability that is tailored to the present setting. Necessary and sufficient conditions to ensure the stochastic tau-stability are provided, and the almost sure stability concept associated with this class of processes is also addressed. The paper also develops equivalences among second order concepts that parallels the results for infinite horizon problems. (C) 2003 Elsevier B.V. All rights reserved.
Resumo:
In this paper, by using the Poincare compactification in R(3) we make a global analysis of the Lorenz system, including the complete description of its dynamic behavior on the sphere at infinity. Combining analytical and numerical techniques we show that for the parameter value b = 0 the system presents an infinite set of singularly degenerate heteroclinic cycles, which consist of invariant sets formed by a line of equilibria together with heteroclinic orbits connecting two of the equilibria. The dynamical consequences related to the existence of such cycles are discussed. In particular a possibly new mechanism behind the creation of Lorenz-like chaotic attractors, consisting of the change in the stability index of the saddle at the origin as the parameter b crosses the null value, is proposed. Based on the knowledge of this mechanism we have numerically found chaotic attractors for the Lorenz system in the case of small b > 0, so nearby the singularly degenerate heteroclinic cycles.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
This work generates, through a sample of numerical simulations of the restricted three-body problem, diagrams of semimajor axis and eccentricity which defines stable and unstable zones for particles in S-type orbits around Pluto and Charon. Since we consider initial conditions with 0 <= e <= 0.99, we found several new stable regions. We also identified the nature of each one of these newly found stable regions. They are all associated to families of periodic orbits derived from the planar circular restricted three-body problem. We have shown that a possible eccentricity of the Pluto-Charon system slightly reduces, but does not destroy, any of the stable regions.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
In most cases, the cost of a control system increases based on its complexity. Proportional (P) controller is the simplest and most intuitive structure for the implementation of linear control systems. The difficulty to find the stability range of feedback systems with P controllers, using the Routh-Hurwitz criterion, increases with the order of the plant. For high order plants, the stability range cannot be easily obtained from the investigation of the coefficient signs in the first column of the Routh's array. A direct method for the determination of the stability range is presented. The method is easy to understand, to compute, and to offer the students a better comprehension on this subject. A program in MATLAB language, based on the proposed method, design examples, and class assessments, is provided in order to help the pedagogical issues. The method and the program enable the user to specify a decay rate and also extend to proportional-integral (PI), proportional-derivative (PD), and proportional-integral-derivative (PID) controllers.
Resumo:
This paper presents a pole placement method using both the augmented Jacobian and the corresponding system transfer function matrices. From the manipulation of these matrices a straightforward approach results to get the coefficients of a non-linear system, whose solution gives the parameters of the stabilizers that can provide a pre-specified minimum damping to the system. (C) 2001 Elsevier B.V. Ltd. All rights reserved.
Resumo:
This work presents a procedure for transient stability analysis and preventive control of electric power systems, which is formulated by a multilayer feedforward neural network. The neural network training is realized by using the back-propagation algorithm with fuzzy controller and adaptation of the inclination and translation parameters of the nonlinear function. These procedures provide a faster convergence and more precise results, if compared to the traditional back-propagation algorithm. The adaptation of the training rate is effectuated by using the information of the global error and global error variation. After finishing the training, the neural network is capable of estimating the security margin and the sensitivity analysis. Considering this information, it is possible to develop a method for the realization of the security correction (preventive control) for levels considered appropriate to the system, based on generation reallocation and load shedding. An application for a multimachine power system is presented to illustrate the proposed methodology. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
The paper presents a method for security control of electric power systems effected by generation reallocation, determined by sensitivity analysis and optimisation. The model is developed considering the dynamic aspects of the network (transient stability). Security control methodology is developed using sensitivity analysis of the security margin in relation to the mechanical power of synchronous machines in the system. The power reallocated to each machine is determined by means of linear programming. To illustrate the proposed methodology, an example is presented which considers a multimachine system composed of 10 synchronous machines, 45 buses, and 72 transmission lines, based on the configuration of a southern Brazilian system.
Resumo:
This work presents a methodology to analyze electric power systems transient stability for first swing using a neural network based on adaptive resonance theory (ART) architecture, called Euclidean ARTMAP neural network. The ART architectures present plasticity and stability characteristics, which are very important for the training and to execute the analysis in a fast way. The Euclidean ARTMAP version provides more accurate and faster solutions, when compared to the fuzzy ARTMAP configuration. Three steps are necessary for the network working, training, analysis and continuous training. The training step requires much effort (processing) while the analysis is effectuated almost without computational effort. The proposed network allows approaching several topologies of the electric system at the same time; therefore it is an alternative for real time transient stability of electric power systems. To illustrate the proposed neural network an application is presented for a multi-machine electric power systems composed of 10 synchronous machines, 45 buses and 73 transmission lines. (C) 2010 Elsevier B.V. All rights reserved.