88 resultados para superstrings
Resumo:
Recently, the superstring was covariantly quantized using the BRST-like operator Q = ∮ λαdα where λα is a pure spinor and dα are the fermionic Green-Schwarz constraints. By performing a field redefinition and a similarity transformation, this BRST-like operator is mapped to the sum of the Ramond-Neveu-Schwarz BRST operator and η0 ghost. This map is then used to relate physical vertex operators and tree amplitudes in the two formalisms. Furthermore, the map implies the existence of a b ghost in the pure spinor formalism which might be useful for loop amplitude computations.
Resumo:
The ten-dimensional superparticle is covariantly quantized by constructing a BRST operator from the fermionic Green-Schwarz constraints and a bosonic pure spinor variable. This same method was recently used for covariantly quantizing the superstring, and it is hoped that the simpler case of the superparticle will be useful for those who want to study this quantization method. It is interesting that quantization of the superparticle action closely resembles quantization of the worldline action for Chern-Simons theory.
Resumo:
Although the equations of motion for the Neveu-Schwarz (NS) and Ramond (R) sectors of open superstring field theory can be covariantly expressed in terms of one NS and one R string field, picture-changing problems prevent the construction of an action involving these two string fields. However, a consistent action can be constructed by dividing the NS and R states into three string fields which are real, chiral and antichiral. The open superstring field theory action includes a WZW-like term for the real field and holomorphic Chern-Simons-like terms for the chiral and antichiral fields. Different versions of the action can be constructed with either manifest d = 8 Lorentz covariance or manifest TV = 1 d = 4 super-Poincaré covariance. The lack of a manifestly d = 10 Lorentz covariant action is related to the self-dual five-form in the type-IIB R-R sector.
Resumo:
A quantizable worldsheet action is constructed for the superstring in a super-symmetric plane wave background with Ramond-Ramond flux. The action is manifestly invariant under all isometries of the background and is an exact worldsheet conformal field theory. © SISSA/ISAS 2002.
Resumo:
Using the pure spinor formalism for the superstring, the vertex operator for the first massive states of the open superstring is constructed in a manifestly super-Poincaré covariant manner. This vertex operator describes a massive spin-two multiplet in terms of ten-dimensional superfields. © SISSA/ISAS 2002.
Resumo:
By replacing ten-dimensional pure spinors with eleven-dimensional pure spinors, the formalism recently developed for covariantly quantizing the d = 10 superparticle and superstring is extended to the d = 11 superparticle and supermembrane. In this formalism, kappa symmetry is replaced by a BRST-like invariance using the nilpotent operator Q = ∮ λ αdα where dα is the worldvolume variable corresponding to the d = 11 spacetime supersymmetric derivative and λα is an SO(10, 1) pure spinor variable satisfying λΓcλ = 0 for c = 1 to 11. Super-Poincaré covariant unintegrated and integrated supermembrane vertex operators are explicitly constructed which are in the cohomology of Q. After double-dimensional reduction of the eleventh dimension, these vertex operators are related to type-IIA superstring vertex operators where Q = QL + QR is the sum of the left and right-moving type-IIA BRST operators and the eleventh component of the pure spinor constraint, λΓ 11λ = 0, replaces the bL 0 - b R 0 constraint of the closed superstring. A conjecture is made for the computation of M-theory scattering amplitudes using these supermembrane vertex operators. © SISSA/ISAS 2002.
Resumo:
Using the U(4) formalism developed ten years ago, the worldsheet action for the superstring in Ramond-Ramond plane wave backgrounds is expressed in a manifestly N = (2,2) superconformally invariant manner. This simplifies the construction of consistent Ramond-Ramond plane wave backgrounds and eliminates the problems associated with light-cone interaction point operators. © SISSA/ISAS 2002.
Resumo:
Using the U(4) hybrid formalism, manifestly N = (2,2) worldsheet supersymmetric sigma models are constructed for the type-IIB superstring in Ramond-Ramond backgrounds. The Kahler potential in these N = 2 sigma models depends on four chiral and antichiral bosonic superfields and two chiral and antichiral fermionic superfields. When the Kahler potential is quadratic, the model is a free conformal field theory which describes a flat ten-dimensional target space with Ramond-Ramond flux and non-constant dilaton. For more general Kahler potentials, the model describes curved target spaces with Ramond-Ramond flux that are not plane-wave backgrounds. Ricci-flatness of the Kahler metric implies the on-shell conditions for the background up to the usual four-loop conformal anomaly. © SISSA/ISAS 2002.
Resumo:
It is proven that the pure spinor superstring in an AdS5 × S5 background remains conformally invariant at one loop level in the sigma model perturbation theory. © SISSA/ISAS 2003.
Resumo:
Classical BRST invariance in the pure spinor formalism for the open superstring is shown to imply the supersymmetric Born-Infeld equations of motion for the background fields. These equations are obtained by requiring that the left and right-moving BRST currents are equal on the worldsheet boundary in the presence of the background. The Born-Infeld equations are expressed in N = 1 D = 10 superspace and include all abelian contributions to the low-energy equations of motion, as well as the leading non-abelian contributions. © SISSA/ISAS 2003.
Resumo:
We calculate the effective action for nonabelian gauge bosons up to quartic order using WZW-like open superstring field theory. After including level zero and level one contributions, we obtain with 75% accuracy the Yang-Mills quartic term. We then prove that the complete effective action reproduces the exact Yang-Mills quartic term by analytically performing a summation over the intermediate massive states. © SISSA/ISAS 2003.
Resumo:
It is proven that the classical pure spinor superstring in an AdS 5 × S5 back-ground has a flat current depending on a continuous parameter. This generalizes the recent result of Bena, et al. for the classical Green-Schwarz superstring. © SISSA/ISAS 2004.
Resumo:
It is shown that the pure spinor formulation of the heterotic superstring in a generic gravitational and super Yang-Mills background has vanishing one-loop beta functions. © SISSA/ISAS 2004.
Resumo:
Different string theories in twistor space have recently been proposed for describing N = 4 super-Yang-Mills. In this paper, a string theory in (x, θ) space is constructed for self-dual N = 4 super-Yang-Mills. It is hoped that these results will be useful for understanding the twistor-string proposals and their possible relation with the pure spinor formalism of the D = 10 superstring. © SISSA/ISAS 2004.
Resumo:
Conformal supergravity arises in presently known formulations of twistor-string theory either via closed strings or via gauge-singlet open strings. We explore this sector of twistor-string theory, relating the relevant string modes to the particles and fields of conformal supergravity. We use the twistor-string theory to compute some tree level scattering amplitudes with supergravitons. Since the supergravitons interact with the same coupling constant as the Yang-Mills fields, conformal supergravity states will contribute to loop amplitudes of Yang-Mills gluons in these theories. Those loop amplitudes will therefore not coincide with the loop amplitudes of pure super Yang-Mills theory. © SISSA/ISAS 2004.