47 resultados para statistical distribution


Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the instrumental records of daily precipitation, we often encounter one or more periods in which values below some threshold were not registered. Such periods, besides lacking small values, also have a large number of dry days. Their cumulative distribution function is shifted to the right in relation to that for other portions of the record having more reliable observations. Such problems are examined in this work, based mostly on the two-sample Kolmogorov–Smirnov (KS) test, where the portion of the series with more number of dry days is compared with the portion with less number of dry days. Another relatively common problem in daily rainfall data is the prevalence of integers either throughout the period of record or in some part of it, likely resulting from truncation during data compilation prior to archiving or by coarse rounding of daily readings by observers. This problem is identified by simple calculation of the proportion of integers in the series, taking the expected proportion as 10%. The above two procedures were applied to the daily rainfall data sets from the European Climate Assessment (ECA), Southeast Asian Climate Assessment (SACA), and Brazilian Water Resources Agency (BRA). Taking the statistic D of the KS test >0.15 and the corresponding p-value <0.001 as the condition to classify a given series as suspicious, the proportions of the ECA, SACA, and BRA series falling into this category are, respectively, 34.5%, 54.3%, and 62.5%. With relation to coarse rounding problem, the proportions of series exceeding twice the 10% reference level are 3%, 60%, and 43% for the ECA, SACA, and BRA data sets, respectively. A simple way to visualize the two problems addressed here is by plotting the time series of daily rainfall for a limited range, for instance, 0–10 mm day−1.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Artificial neural networks (ANNs) have been widely applied to the resolution of complex biological problems. An important feature of neural models is that their implementation is not precluded by the theoretical distribution shape of the data used. Frequently, the performance of ANNs over linear or non-linear regression-based statistical methods is deemed to be significantly superior if suitable sample sizes are provided, especially in multidimensional and non-linear processes. The current work was aimed at utilising three well-known neural network methods in order to evaluate whether these models would be able to provide more accurate outcomes in relation to a conventional regression method in pupal weight predictions of Chrysomya megacephala, a species of blowfly (Diptera: Calliphoridae), using larval density (i.e. the initial number of larvae), amount of available food and pupal size as input data. It was possible to notice that the neural networks yielded more accurate performances in comparison with the statistical model (multiple regression). Assessing the three types of networks utilised (Multi-layer Perceptron, Radial Basis Function and Generalised Regression Neural Network), no considerable differences between these models were detected. The superiority of these neural models over a classical statistical method represents an important fact, because more accurate models may clarify several intricate aspects concerning the nutritional ecology of blowflies.