128 resultados para spectrometer
Resumo:
This work describes the synthesis and characterization of 2-aminothiazole modified silica gel (SiAT), and the results of a study of the adsorption and pre-concentration (in batch and using a flow-injection system coupled to an absorption atomic spectrometer) of Cu(II), Ni(II) and Pb(II) in aqueous medium. The adsorption capacities for each metal ions in mmol g -1 were: Cu(II)= 1.18, Ni(II)= 1.15 and Pb(II)= 1.10. The results obtained in the flow experiments showed a recovery of practically 100% of the metal ions adsorbed in a mini-column packed with 100 mg of SiAT, using 100 μL of 2.0 mol L -1 HCl solution as eluent. The sorption-desorption of the metal ions made possible the application of a flow-injection system for the pre-concentration and quantification by FAAS of metal ions at trace level in natural water samples digested and not digest by an oxidizing UV photolysis.
Resumo:
The interactions of tropical aquatic fulvic acids (AFA) with chlorine and formation of trihalomethanes were characterized by fluorescence spectroscopy. The aquatic humic substances (AHS) were isolated from a dark-brown stream (located in a environmental protection area near Cubatão city in São Paulo State, Brazil) by means of the collector XAD 8 according the procedure recommended by the International Humic Substances Society. The photoluminescence measurements were made by using a Perkin Elmer spectrometer; AHS, aquatic humic acids (AHA) and AFA samples were assayed. The interactions of AFA and chlorine were characterized by using different reaction times (1, 24, 48, 72 and 168 h) and chlorine concentrations (2.5, 5.0, 10.0 and 20.0 mg L-1). The relative fluorescence intensity for AFA was significantly decreased with the increasing of chlorine concentration and reaction time. The reduction of fluorescence intensity in the region of longer wavelength was interpreted as an indicative of interaction between condensed aromatic groups of AFA and chlorine.
Resumo:
The aim of this investigation was to evaluate the cleaning effect of CO 2 on surface topography and composition of failed dental implant surfaces. Ten failed dental implants were retrieved from nine patients (mean age, 46.33 ± 5.81 years) as a result of early or late failure. The implants were divided into two parts: one side of the implant was irradiated with a CO 2 laser (test side), while the other side did not receive irradiation (control side). The CO 2 laser was operated at 1.2 W in a continuous wave for 40 seconds (40 J energy). The handpiece of the CO 2 laser was kept at a distance of 30 mm from the implant surface, resulting in a spot area of 0.031415 cm 2 (38.20 W/cm 2; 1559 J/cm 2) in scanning mode (cervical-apical). One unused dental implant was used as a negative control for both groups. All implant surfaces were examined by scanning electron mi croscopy (SEM) and energy-dispersive spectrometer x-ray (EDS) for element analysis. SEM showed that the surface of the test sides consisted of different degrees of organic residues, appearing mainly as dark stains similar to those observed on the control sides. None of the test surfaces presented alterations such as crater-like alterations, lava-like layers, or melting compared with the nonirradiated surfaces. Foreign elements such as carbon, oxygen, sodium, calcium, and aluminum were detected on both sides. These results suggest that CO 2 laser irradiation does not modify the implant surface, although the cleaning effect was not satisfactory.
Resumo:
Coriander (Coriandrum sativum L.) is an annual and herbaceous plant, belonging to the Apiaceae family. Native of southern Europe and western Mediterranean region, this herb is cultivated world widely. This species, rich in linalool, has potential using as source of essential oil and as a medicinal plant. It has been used as analgesic, carminative, digestive, depurative, anti-rheumatic and antispasmodic agent. Its fruits (commonly called seeds) are used for flavoring candies, in cookery, perfumery, beverage and in tobacco industry. The aim of this study was to analyze the chemical composition of the seed essential oil of this species grown in Botucatu, São Paulo, Brazil. The experiment was carried out in Lageado Experimental Farm, Department of Plant Production, Agronomical Sciences College, São Paulo State University. The fruits were harvest 108 days after sowing. The essential oils were extracted by hydro distillation, in Clevenger apparatus. 50 g of fruits were used in each extraction. Three extractions were performed during three hours. The essential oils were analyzed in Gas Chromatography Mass Spectrometer (CG-MS, Shimadzu, QP-5000), equipped with DB-5 capillary column (30 m × 0,25 mm × 0,25 mm), split 1/20, injector for 240 C°, detector for 230 C°, dragged by gas He (1,7 mL/min), with programmed temperature for 40 C° (5 min)-150 C°, 4 C°/min; 150 C°-280 C°, 8 C°/min. The identification of the compounds was made by comparison of their spectra of masses with data from CG-MS (Nist 62 lib), literature references and retention index of Kovats. The 18 most important components were identified and quantified. The main components of the oil were linalool (77.48 %), γ-terpinene (4.64 %), α-pinene (3.97 %), limonene (1.28 %), geraniol (0.64 %) and 2-decenal (0.16 %).
Resumo:
Isotope screening is a simple test for determining the photosynthetic pathway used by plants. The scope of this work was to classify the photosynthetic type of some herbs and medicinal plants through studies of the carbon isotope composition (δ13C). Also, we propose the use of carbon isotope composition as a tool to control the quality of herbs and medicinal plants. For studies of δ13C, δ 13C‰ = [R (sample)/R (standard) - 1] × 10-3, dry leaves powdered in cryogenic mill were analyzed in a mass spectrometer coupled with an elemental analyzer for determining the ratio R = 13CO2/12CO2. In investigation of δ13C of 55 species, 23 botanical families, and 44 species possessed a C3 photosynthetic type. Six species found among the botanical families Euphorbiaceae and Poaceae were C4 plants, and 5 species found among the botanical families Agavaceae, Euphorbiaceae, and Liliaceae possessed CAM-type photosynthesis. Carbon isotope composition of plants can be used as quality control of herbs and medicinal plants, allowing the identification of frauds or contaminations. Also, the information about the photosynthetic type found for these plants can help in introducing and cultivating exotic and wild herbs and medicinal plants.
Resumo:
SAOZ (Systeme d'Analyse par Observations Zenithales) is a ground-based UV-Visible zenith-sky spectrometer installed between 1988 and 1995 at a number of NDSC stations at various latitudes on the globe. The instrument is providing ozone and NO2 vertical columns at sunrise and sunset using the Differential Optical Absorption Spectroscopy (DOAS) technique in the visible spectral range. The ERS-2 GOME Ozone Monitoring Experiment (GOME) in 1995 was the first satellite mission to provide a global picture of atmospheric NO 2 with reasonable spatial and temporal resolution. It was then followed by SCanning ImAging spectroMeter for Atmospheric ChartographY (SCIAMACHY) onboard ENVISAT in 2002, and Ozone Monitoring Instrument (OMI) onboard EOS-AURA in 2004, with a similar capacity to monitor total NO 2. All these instruments are nadir viewing mapping spectrometers, applying the DOAS technique in the visible for deriving the NO2 total column. Here we present the results of NO2 long-term comparisons between GOME and SAOZ for the whole period of GOME operation since 1995 at all latitudes - tropics, mid-latitudes and polar regions - in both hemispheres. Comparisons are also shown with the most recently available SCIAMACHY and OMI data in 2004-2005. Overall, the daytime satellite measurements (around noon) are found consistent with sunrise ground-based data, with an average smaller difference at the tropics and mid-latitudes than in the polar areas in the summer. The agreement is even improved after correcting for the NO2 photochemical change between sunrise and the satellite overpass using a box model. However, some seasonal dependence of the difference between ground-based and satellite total NO2 still remains, related to the accuracy of photochemical simulations and the set of NO2 air mass factors used in the retrievals of both systems.
Resumo:
Within the next decade, the improved version 2 of Global Ozone Monitoring Experiment (GOME-2), a ultraviolet-visible spectrometer dedicated to the observation of key atmospheric trace species from space, will be launched successively on board three EUMETSAT Polar System (EPS) MetOp satellites. Starting with the launch of MetOp-1 scheduled for summer 2006, the GOME-2 series will extend till 2020 the global monitoring of atmospheric composition pioneered with ERS-2 GOME-1 since 1995 and enhanced with Envisat SCIAMACHY since 2002 and EOS-Aura OMI since 2004. For more than a decade, an international pool of scientific teams active in ground-and space-based ultraviolet-visible remote sensing have contributed to the successful post-launch validation of trace gas data products and the associated maturation of retrieval algorithms for the latter satellites, ensuring that geophysical data products are/become reliable and accurate enough for intended research and applications. Building on this experience, this consortium plans now to develop and carry out appropriate validation of a list of GOME-2 trace gas column data of both tropospheric and stratospheric relevance: nitrogen dioxide (NO 2), ozone (O 3), bromine monoxide (BrO), chlorine dioxide (OClO), formaldehyde (HCHO), and sulphur dioxide (SO 2). The proposed investigation will combine four complementary approaches resulting in an end-to-end validation of expected column data products.
Resumo:
Isotope screening is a simple and cheap test for determining the photosynthetic pathway used by plants. The scope of this work was to classify the photosynthetic type of Melissa officinalis L. and Cymbopogon citratus [DC.] Stapf, through studies of the carbon isotope composition (δ13 C), and we are proposing the use of carbon isotope composition results as a tool to control the quality of medicinal plants. For studies of δ 13C (13 C% = [R (sample)/R (standard) - 1] × 10 -3), dried, powdered leaves were analyzed in a mass spectrometer coupled with an elemental analyzer for determining the ratio R (R = 13CO2/12CO2). As results, M. officinalis presented a C3 photosynthetic type, and C. citratus presented a C4 photosynthetic type. The carbon isotope composition from this study can be used as quality control of M. officinalis adulterants.
Resumo:
The present work develops and optimizes a method to determine copper in samples of feces and fish feed by graphite furnace atomic absorption spectrometry (GFAAS) through the direct introduction of slurries of the samples into the spectrometer's graphite tube coated internally with metallic rhodium and tungsten carbide that acts as chemical modifiers. The limits of detection (LOD) and quantification (LOQ) calculated for 20 readings of the blank of the standard slurries (0.50% m/v of feces or feed devoid of copper) were 0.24 and 0.79 μg L -1 for the standard feces slurries and 0.26 and 0.87 μg L -1 for the standard feed slurries. The proposed method was applied in studies of absorption of copper in different fish feeds and their results proved compatible with that obtained from samples mineralized by acid digestion using microwave oven. © Springer Science+Business Media, LLC 2008.
Resumo:
To carry out the dating by the Fission Track Method (FTM) the international community that works with this method employs methodologies in which the mineral to be dated must be irradiated with neutrons. Such irradiation, performed in a nuclear reactor, demand a relatively long waiting time so that the activity of the sample attain a proper level for handling. The present work aims to establish a methodology that makes possible the dating by FTM using a mass spectrometer instead of a nuclear reactor. This methodology was applied to apatite samples from Durango, Mexico. © 2009 Elsevier Ltd. All rights reserved.
Resumo:
Amalgam has been used as a filling material for over 150 years. Mercury, copper, and zinc are present in restoration. The aim of this study was to compare mercury, copper, and zinc concentrations in extracted human teeth with amalgam restorations and teeth without restorations. Thirty-two teeth, 15 restored with dental amalgam and 17 without restorations, were chemically analyzed in an Optima 3300 DV (Perkin Elmer) plasma emission spectrometer. Mercury, copper, and zinc were found in human teeth regardless of the presence of amalgam restorations. The highest mercury concentrations were found in the coronary portions of the teeth with amalgam restorations. Copper concentrations were very high. Zinc concentrations in the teeth without restoration were lower than those seen in the coronary portion of the teeth with restorations. © 2009 Heldref Publications.
Resumo:
The alignment system for the muon spectrometer of the CMS detector comprises three independent subsystems of optical and analog position sensors. It aligns muon chambers with respect to each other and to the central silicon tracker. System commissioning at full magnetic field began in 2008 during an extended cosmic ray run. The system succeeded in tracking muon detector movements of up to 18 mm and rotations of several milliradians under magnetic forces. Depending on coordinate and subsystem, the system achieved chamber alignment precisions of 140-350 μm and 30-200 μrad, close to the precision requirements of the experiment. Systematic errors on absolute positions are estimated to be 340-590 μm based on comparisons with independent photogrammetry measurements. © 2010 IOP Publishing Ltd and SISSA.
Resumo:
The aim of this work was to develop an isotopic analysis method to quantify the carbon of C3 photosynthesis cycle in grape nectar and to identify the commercial beverages in disagreement to the Brazilian Ministry of Agriculture, Livestock and Food Supply (MAPA) regulation. The nectars were produced in a laboratory, according to the Brazilian Law. Adulterated beverages with quantity of grape juice lower than the legal limit were also produced. Isotopic analysis measured the relative isotopic enrichment of grape nectar and its purified sugar fraction. Based on these results, it was possible to estimated the quantity of source C3 by means of isotopic dilution equation. To determine the existence of adulteration in commercial nectars, it was necessary to create a legal limit according to the Brazilian Law. One of the twelve commercial brands of nectar analyzed was classified as adulterated. The developed methodology proved to be efficient to quantify the carbon of C3 origin and identify the adulterated commercial grape nectar.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)