83 resultados para solution structure
Resumo:
Zein films plasticized with oleic acid were formed by solution casting, by the stretching of moldable resins, and by blown film extrusion. The effects of the forming process on film structure were investigated by X-ray diffraction. Wide-angle X-ray scattering (WAXS) patterns showed d-spacings at 4.5 and 10 angstrom, which were attributed to the zein alpha-helix backbone and inter-helix packing, respectively. The 4.5.angstrom d-spacing remained stable under processing while the 10 angstrom d-spacing varied with processing treatment. Small-angle X-ray scattering (SAXS) detected a long-range periodicity for the formed films but not for unprocessed zein, which suggests that the forming process-promoted film structure development is possibly aided by oleic acid. The SAXS d-spacing varied among the samples (130-238 angstrom) according to zein origin and film-forming method. X-ray scattering data suggest that the zein molecular structure resists processing but the zein supramolecular arrangements in the formed films are dependent on processing methods.
Resumo:
Stoichiometric CaWO4 and SrWO4 thin films were synthesized using a chemical solution processing, the so-called polymeric precursor method. In this soft chemical method, soluble precursors such as strontium carbonate, calcium carbonate and tungstic acid, as starting materials, were mixed in an aqueous solution. The thin films were deposited on glass substrates by means of the spinning technique. The surface morphology and crystal structure of the thin films were investigated using X-ray diffraction (XRD), scanning electron microscopy (SEM), and atomic force microscopy (AFM). Nucleation stages and surface morphology evolution of the thin films on glass substrates were studied by atomic force microscopy. The films nucleate at 300 degreesC, after the coalescence of small nuclei into larger grains yielding a homogeneous dense surface. XRD characterization of these films showed that the CaWO4 and SrWO4 phases crystallize at 400 degreesC from an inorganic amorphous phase. No intermediate crystalline phase was identified. The optical properties were also studied. It was found that CaWO4 and SrWO4 thin films have an optical band gap, E-gap=5.27 and 5.78 eV, respectively, of a direct transition nature. The excellent microstructural quality and chemical homogeneity confirmed that this soft solution processing provides an inexpensive and environmentally friendly route for the preparation of CaWO4 and SrWO4 thin films. (C) 2003 Elsevier B.V. All rights reserved.
Resumo:
Haemoglobin, the 'honorary enzyme' [Brunori (1999), Trends Biochem. Sci. 24, 158-161], constitutes a prime prototype for allosteric models. Here, the crystallization and preliminary X-ray analysis of haemoglobin I from the South American fish Brycon cephalus are reported. X-ray diffraction data have been collected to 2.5 Angstrom resolution using synchrotron radiation (LNLS). Crystals were determined to belong to the space group P6(1)22 and preliminary structural analysis revealed the presence of one dimer (alpha beta) in the asymmetric unit. The structure was determined using standard molecular-replacement techniques.
Resumo:
Calcium modified lead titanate sol was synthesized using a soft solution processing, the so-called polymeric precursor method. In soft chemistry method, soluble precursors such as lead acetate trihydrate, calcium carbonate and titanium isopropoxide, as starting materials, were mixed in aqueous solution. Pb0.7Ca0.3TiO3 thin films were deposited on platinum-coated silicon and quartz substrates by means of the spinning technique. The surface morphology and crystal structure, dielectric and optical properties of the thin films were investigated. The electrical measurements were conducted on metal-ferroelectric-metal (MFM) capacitors. The typical measured small signal dielectric constant and dissipation factor at a frequency of 100 kHz were 299 and 0.065, respectively, for a thin film with 230 nm thickness annealed at 600degreesC for 2 h. The remanent polarization (2P(r)) and coercive field (E-c) were 32 muC/cm(2) and 100 kV/cm, respectively. Transmission spectra were recorded and from them, refractive index, extinction coefficient, and band gap energy were calculated. Thin films exhibited good optical transmissivity, and had optical direct transitions. The present study confirms the validity of the DiDomenico model for the interband transition, with a single electronic oscillator at 6.858 eV. The optical dispersion behavior of PCT thin film was found to fit well the Sellmeir dispersion equation. The band gap energy of the thin film, annealed at 600degreesC, was 3.56 eV. The results confirmed that soft solution processing provides an inexpensive and environmentally friendly route for the preparation of PCT thin films.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Gingival mucosae of man and the adult Cebus apella monkey were fixed for 3 hr in modified Karnovsky fixative containing 2.5% glutaraldehyde, 2% formaldehyde in 0.1 M sodium phosphate buffer (pH=7.4). The specimens were postfixed in 1% osmium tetroxide in 0.1 M sodium phosphate buffer at 4°C for 2 hr, dehydrated in a graded alcohol series and embedded in Epon 812. Thick sections of 1-3 μm and ultrathin sections of 40-80 nm in thickness were cut with glass knives on an LKB ultramicrotome. The thick sections were stained with toluidine blue solution, and the grids were stained with uranyl acetate and lead citrate and examined under a Philips EM-301 electron microscope. Our observations permitted us to conclude that: both gingival mucosae, of man and the Cebus apella monkey, have lamellar nerve endings; these corpuscles are localized in the papillar space of the epithelium and do not contact closely with the basement membrane; the nerve endings are composed of an afferent fiber which subdivides several times and forms irregular flattened or discoidal expansions; the laminae of the lamellar cells are very thin near the terminal axon and are larger and irregular in shape at the peripheral portion of the corpuscle; the terminal axon shows abundant mitochondria, myelin figures, clear vesicles, and multivesicular bodies; between the axoplasm membrane and adjacent cytoplasmic lamina and between the lamellae, small desmosome type junctions are noted; and the cytoplasmic material of the lamellae cells is characterized by the presence of numerous microfilaments, microtubules, mitochondria, rough endoplasmic reticulum, and caveolae.
Resumo:
We consider a simple way of solving the flavor question by embedding the three-family standard model in a semisimple gauge group extending minimally the weak isospin factor. Quantum chiral anomalies between families of fermions cancel with a matching of the number of families and the number of color degrees of freedom. Our demonstration shows how the theory leads to determination of families structure when the standard model is the input at low energies. The new physics is limited to start below a few TeVs within the reach of the next generation colliders.
Resumo:
We report on the properties of BaBi2Ta2O9 (BBT) thin films for dynamic random-access memory (DRAM) and integrated capacitor applications. Crystalline BBT thin films were successfully fabricated by the chemical solution deposition technique on Pt-coated Si substrates at a low annealing temperature of 650°C. The films were characterized in terms of structural, dielectric, and insulating properties. The electrical measurements were conducted on Pt/BBT/Pt capacitors. The typical measured small signal dielectric constant and dissipation factor, at 100 kHz, were 282 and 0.023, respectively, for films annealed at 700°C for 60 min. The leakage current density of the films was lower than 10-9 A/cm2 at an applied electric field of 300 kV/cm. A large storage density of 38.4 fC/μm2 was obtained at an applied electric field of 200 kV/cm. The high dielectric constant, low dielectric loss and low leakage current density suggest the suitability of BBT thin films as dielectric layer for DRAM and integrated capacitor applications.
Resumo:
Undoped and indium-doped Zinc oxide (ZnO) solid films were deposited by the pyrosol process at 450°C on glass substrates from solutions where In/Zn ratio was 2, 5, and 10 at.%. Electrical measurements performed at room temperature show that the addition of indium changes the resistance of the films. The resistivities of doped films are less than non-doped ZnO films by one to two orders of magnitude depending on the dopant concentration in the solution. Preferential orientation of the films with the c-axis perpendicular to the substrate was detected by X-ray diffraction and polarized extended X-ray absorption fine structures measurements at the Zn K edge. This orientation depends on the indium concentration in the starting solution. The most textured films were obtained for solutions where In/Zn ratio was 2 and 5 at.%. When In/Zn = 10 at.%, the films had a nearly random orientation of crystallites. Evidence of the incorporation of indium in the ZnO lattice was obtained from extended X-ray absorption fine structures at the In and Zn K edges. The structural analysis of the least resistive film (Zn/In = 5 at.%) shows that In substitutes Zn in the wurtzite structure. © 2000 Elsevier Science B.V. All rights reserved.
Resumo:
This paper presents necessary and sufficient conditions for the following problem: given a linear time invariant plant G(s) = N(s)D(s)-1 = C(sI - A]-1B, with m inputs, p outputs, p > m, rank(C) = p, rank(B) = rank(CB) = m, £nd a tandem dynamic controller Gc(s) = D c(s)-1Nc(s) = Cc(sI - A c)-1Bc + Dc, with p inputs and m outputs and a constant output feedback matrix Ko ε ℝm×p such that the feedback system is Strictly Positive Real (SPR). It is shown that this problem has solution if and only if all transmission zeros of the plant have negative real parts. When there exists solution, the proposed method firstly obtains Gc(s) in order to all transmission zeros of Gc(s)G(s) present negative real parts and then Ko is found as the solution of some Linear Matrix Inequalities (LMIs). Then, taking into account this result, a new LMI based design for output Variable Structure Control (VSC) of uncertain dynamic plants is presented. The method can consider the following design specifications: matched disturbances or nonlinearities of the plant, output constraints, decay rate and matched and nonmatched plant uncertainties. © 2006 IEEE.
Resumo:
The dental bleaching is known for many years. Recently a technique employing light has open up new and exciting possibilities. Besides its vast application there are still many important points to be understood about teeth photon bleaching. In this work we present an in vitro experiment to explore the main mechanisms involved during the photon action in tooth whitening. Our results indicated that light at same wavelengths are great absorbed by pigments creating a local heating which considerably increase the bleaching rate. This results in a fast reaction without heating the whole dental structure. We discuss details of our experiment. Work supported by Fapesp and CNPq.
Resumo:
The dynamical system investigated in this work is a nonlinear flexible beam-like structure in slewing motion. Non-dimensional and perturbed governing equations of motion are presented. The analytical solution for the linear part of these perturbed equations for ideal and for non-ideal cases are obtained. This solution is necessary for the investigation of the complete weak nonlinear problem where all nonlinearities are small perturbations around a linear known solution. This investigation shall help the analyst in the modelling of dynamical systems with structure- actuator interactions.
Resumo:
The ability to control the carbon nanotube (CNT) dispersion in polymers is considered the key to most applications of nanotube/polymer composites. The carbon nanotube dispersion into water with different surfactants, as well as its incorporation into phenolic resins, was investigated. Ultrasonication of liquid suspensions was used to prepare stable dispersions. In order to evaluate the best surfactant to be used, light scattering and UV-Visible spectroscopy were employed. The structure of CNT reinforced of phenolic resin was analyzed in function of the concentration and type of surfactant, sonication power and time. It was also evaluated the influence in the dispersion by using the glass temperature transition properties being obtained by dynamic mechanical analyses and impact energy. © 2011 Sociedade Brasileira de Química.