69 resultados para soil microbiol activity
Resumo:
The degradation of DDT [1,1-bis(4-chlorophenyl)-2,2,2-trichloroethane] and DDE [2,2-bis(4-chlorophenyl)-1,1-dichloroethylene] in highly and long-term contaminated soil using Fenton reaction in a slurry system is studied in this work. The influence of the amount of soluble iron added to the slurry versus the mineral iron originally present in the soil, and the influence of H2O2 concentration on the degradation process are evaluated. The main iron mineral species encountered in the soil, hematite (Fe2O3), did not show catalytic activity in the decomposition of H2O2, resulting in low degradation of DDT (24%) and DDE (4%) after 6 h. The addition of soluble iron (3.0 mmol L-1) improves the reaction reaching 53% degradation of DDT and 46% of DDE. The increase in iron concentration from 3.0 to 24 mmol L-1 improves slightly the degradation rate of the contaminants. However, similar degradation percentages were obtained after 24 h of reaction. It was observed that low concentrations of H2O2 were sufficient to degrade around 50% of the DDT and DDE present in the soil, while higher degradation percentages were achieved only with high amounts of this reagent (1.1 mol L-1). (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
Ingestion of transgalactosylated oligosaccharides (TOS) and other non-digestible oligosaccharides (NDOs) induces a significant increase in Bifidobacterium, Lactobacillus and some desirable species of Streptococcus populations in the gut of human and other animals (prebiotic effect). This change in the intestinal flora is responsible for several beneficial physiological effects such as a decrease of putrefactive products in the feces, lower blood cholesterol content, higher Ca2+ absorption, a smaller loss of bone tissue in ovariotomized female rats and a lower incidence of colon cancer. beta-Galactosidase from Penicillium simplicissimum, a strain isolated from soil, showed high galactosyltransferase activity when incubated with a highly concentrated lactose solution. Optimum pH and temperature ranges for hydrolytic activity were 4.0-4.6 and 55-60 degrees C, respectively, for a lactose concentration of 5.0% (w/v). Maximal galactosyltransferase activity was obtained at pH 6.5 and 50 degrees C and TOS synthesis was positively associated with lactose concentration in the reaction medium. Thus, when 50 ml of a 60% (w/v) lactose solution was incubated with 26.6 U of beta-galactosidase under the best pH and temperature conditions for transferase activity, a final product with 30.5% TOS (183 mg ml(-1)), 27.5% residual lactose and 42.0% monosaccharides was obtained. (C) 1999 Elsevier B.V. Ltd. All rights reserved.
Resumo:
Aspergillus niger - 245 a strain isolated from soil samples showed good beta -fructosidase activity when inoculated in medium formulated with dahlia extract tubers. The enzyme was purified by precipitation in ammonium sulphate and percolated in DEAE-Sephadex A-50 and CM-cellulose columns, witch showed a single peack in all the purification steps, maintaining the I/S ratio between 0.32 to, 0.39. Optimum pH for inulinase activity (I) was between 4.0 - 4.5 and for invertase activity (S) between 2.5 and 50. The optimum temperature was 60 degrees .C for both activities and no loss in activity was observed when it was maintained at this temperature for 30 min. The K-m value was 1.44 and 5.0 respectively, for I and S and V-m value 10.48 and 30.55 respectively. The I activity was strongly inhibited by Hg2+ and Ag+ and 2 x 10(-3) M of glucose, but not by fructose at the same concentration. The enzyme showed an exo-action mechanism acting on the inulin of different origins. In assay conditions total hydrolysis of all the frutans was obtained although it has shown larger activity on the chicory inulin than that one from artichoke Jerusalem and dahlia, in the first 30 min. The obtained results suggested that the enzyme presented good potential for industrial application in the preparing the fructose syrups.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Forty two soil isolates (31 bacteria and 11 fungi) were studied for their ability to solubilize rock phosphate and calcium phosphate in culture medium. Eight bacteria and 8 fungi possessed solubilizing ability. Pseudomonas cepacia and Penicillium purpurogenum showed the highest activity. There was a correlation between final pH value and titratable acidity (r = - 0.29 to -0.87) and between titratable acidity and soluble phosphate (r = 0.22 to 0.99). Correlation values were functions of insoluble phosphate and of the group of microorganisms considered. A high correlation was observed between final pH and soluble phosphate only for the rock phosphates inoculated with the highest concentration of solubilizing bacteria (r = -0.73 to -0.98).
Resumo:
An actinomycete strain (Ar386) was isolated from the soil of the Araraquara regio, SP, Brazil. The strain, named Streptomyces jacareensis, formed irregular rayed, rugose, grayish-white mycelium with sinuous, branched hyphae carrying rare isolated spores; assimilated glucose, galactose, inositol, ribose, maltose, sucrose, melibiose and starch but not mannitol, rhamnose, arabinose, xylose, lactose and raffinose; and contained LL- diaminopimelic acid in its cell wall. An antibiotic active against Gram- positive bacteria, which was characterized as being 26-deoxylaidlomycin and which may have application against poultry coccidiosis, was isolated from cultures of the strain. This was the first isolation of this antibiotic from a microorganism of the genus Streptomyces and also the first isolation of this antibiotic in Brazil.
Resumo:
The present work was carried out at the Faculdade de Ciências Agronômicas - UNESP, Botucatu, SP. The purpose of the study was to evaluate the physiological and biochemical behavior of sweet pepper (Capsicum annuum L.) plants under different soil water availability conditions and the efficiency of the peroxidase (EC. 1.11.1.7) activity as an indicator of water stress in plants. Sweet pepper plants were grown for 230 days after transplanting of seedlings. The experiment was arranged in a completely randomized experimental design with 4 treatments, two irrigation managements (50 and 1500 kPa) and two soil surface managements (presence or absence of black polyethylene covering), and six replications. Physiological activities, such as stomatal transpiration and resistance to water vapor diffusion, were evaluated, as well as biochemical activities, such as peroxidase activity and total soluble protein in foliar tissues. It was observed that soil water availability may lead to physiological and biochemical alterations in plants. Successive water stress cycles may promote the development of characteristics responsible for improving the plant tolerance to periods of low water availability. The peroxidase enzyme activity showed to be an efficient indicator of water stress in sweet pepper plants.
Resumo:
The purpose of the study was to evaluate the physiological and biochemical behavior of sweet pepper (Capsicum annuum L.) plants under different soil water availability conditions and the efficiency of the peroxidase (EC. 1.11. 1.7) activity as an indicator of water stress in plants. The experiment was carried out at the Faculdade de Ciências Agronômicas UNESP, Botucatu, SP. Sweet pepper plants were grown for 230 days after transplanting of seedlings and arranged in a completely randomized experimental design with 4 treatments, two irrigation managements (50 and 1500 kPa) and two soil surface managements (presence or absence of black polyethylene covering), and six replications. Physiological activities, such as stomatal transpiration and resistance to water vapor diffusion, were evaluated as well as biochemical activities, such as peroxidase activity and total soluble protein in foliar tissues. It was observed that soil water availability may lead to physiological and biochemical alterations in plants. Successive water stress cycles may promote the development of characteristics responsible for improving plant tolerance to periods of low water availability. The peroxidase enzyme activity showed to be an efficient indicator of water stress in sweet pepper plants.
Resumo:
The ash of rice rind is a pozzolanic material that reacts with the calcium hydroxide (Ca (OH)2) forming bonding composites, when finely worn out and in water presence. Considering this behavior, the objective of the present work was to evaluate the potential use of this residue in the enrichment of the content of pozzolanic materials of a tropical soil stabilized with a commercial hydrated lime. The laboratory testing program incorporated unconfined compression strength tests performed on the soil and on its mixtures with contents of 8% of lime enriched with 5 and 10% of ash of rice rind in relation to the soil dry mass. The results of the testing program supported that the use of the residue was effective in increasing the degree of reactivity of the soil that was also directly related with the increase in the ash content and the period of cure of the mixtures.
Resumo:
In Brazil, the degradation of soil and landscape by urban and agricultural frontiers expansion leads to the need for comprehensive studies and consider the diverse biological activities generated from different interventions in the landscape, becoming an instrument for assessing the impacts and the decision for its environmental management. The objective of this study was to evaluate the influence of different forms of occupation of the landscape, considering ecological elements and their interactions. The work was carried out on the Instituto Agronômico in the county of Jundiai, in the state of Sao Paulo, Brazil. The area under study has been subjected to different use and occupancy for a period of about 40 years. During this period the landscape has been transformed, with the current scenario can be classified as a degraded area mining; grassy area; Araucaria forest and pasture. These areas were evaluated by means of a transect, from which ten sampling sites were selected for the description of diverse biological activities, which included: evaluation and description of ground cover, identifying the presence of fungus and insect species. Furthermore, we evaluated in these points the pH, fertility and porosity of the topsoil (0-0.10 m). The results showed a variation of the elements analyzed and a relationship between the use and occupation of land in the different scenarios of the current landscape. The biological activity was more diverse in the Araucaria forest, reflected by the abundance of litter, higher content of organic matter and soil nutrients, demonstrating the effectiveness of the technique for assessing the level of degradation of the landscape used, which is expeditious and inexpensive.
Resumo:
The addition of nutrients and/or soil bulking agents is used in bioremediation to increase microbial activity in contaminated soils. For this purpose, some studies have assessed the effectiveness of vinasse in the bioremediation of soils contaminated with petroleum waste. The present study was aimed at investigating the clastogenic/aneugenic potential of landfarming soil from a petroleum refinery before and after addition of sugar cane vinasse using the Allium cepa bioassay. Our results show that the addition of sugar cane vinasse to landfarming soil potentiates the clastogenic effects of the latter probably due the release of metals that were previously adsorbed into the organic matter. These metals may have interacted synergistically with petroleum hydrocarbons present in the landfarming soil treated with sugar cane vinasse. We recommend further tests to monitor the effects of sugar cane vinasse on soils contaminated with organic wastes. © 2012 Springer Science+Business Media B.V.
Resumo:
Metagenomics has been widely employed for discovery of new enzymes and pathways to conversion of lignocellulosic biomass to fuels and chemicals. In this context, the present study reports the isolation, recombinant expression, biochemical and structural characterization of a novel endoxylanase family GH10 (SCXyl) identified from sugarcane soil metagenome. The recombinant SCXyl was highly active against xylan from beechwood and showed optimal enzyme activity at pH 6,0 and 45°C. The crystal structure was solved at 2.75 Å resolution, revealing the classical (β/α)8-barrel fold with a conserved active-site pocket and an inherent flexibility of the Trp281-Arg291 loop that can adopt distinct conformational states depending on substrate binding. The capillary electrophoresis analysis of degradation products evidenced that the enzyme displays unusual capacity to degrade small xylooligosaccharides, such as xylotriose, which is consistent to the hydrophobic contacts at the +1 subsite and low-binding energies of subsites that are distant from the site of hydrolysis. The main reaction products from xylan polymers and phosphoric acid-pretreated sugarcane bagasse (PASB) were xylooligosaccharides, but, after a longer incubation time, xylobiose and xylose were also formed. Moreover, the use of SCXyl as pre-treatment step of PASB, prior to the addition of commercial cellulolytic cocktail, significantly enhanced the saccharification process. All these characteristics demonstrate the advantageous application of this enzyme in several biotechnological processes in food and feed industry and also in the enzymatic pretreatment of biomass for feedstock and ethanol production. © 2013 Alvarez et al.
Resumo:
The increased production of urban sewage sludge requires alternative methods for final disposal. A very promising choice is the use of sewage sludge as a fertilizer in agriculture, since it is rich in organic matter, macro and micronutrients. However, urban sewage sludge may contain toxic substances that may cause deleterious effects on the biota, water and soil, and consequently on humans. There is a lack of studies evaluating how safe the consumption of food cultivated in soils containing urban sewage sludge is. Thus, the aim of this paper was to evaluate biochemical and redox parameters in rats fed with corn produced in a soil treated with urban sewage sludge for a long term. For these experiments, maize plants were grown in soil amended with sewage sludge (rates of 5, 10 and 20. t/ha) or not (control). Four different diets were prepared with the corn grains produced in the field experiment, and rats were fed with these diets for 1, 2, 4, 8 and 12 weeks. Biochemical parameters (glucose, total cholesterol and fractions, triglycerides, aspartate aminotransferase and alanine aminotransferase) as well the redox state biomarkers such as reduced glutathione (GSH), malondialdehyde (MDA), catalase, glutathione peroxidase and butyrylcholinesterase (BuChE) were assessed. Our results show no differences in the biomarkers over 1 or 2 weeks. However, at 4 weeks BuChE activity was inhibited in rats fed with corn grown in soil amended with sewage sludge (5, 10 and 20. t/ha), while MDA levels increased. Furthermore, prolonged exposure to corn cultivated in the highest amount per hectare of sewage sludge (8 and 12 weeks) was associated with an increase in MDA levels and a decrease in GSH levels, respectively. Our findings add new evidence of the risks of consuming food grown with urban sewage sludge. However, considering that the amount and type of toxic substances present in urban sewage sludge varies considerably among different sampling areas, further studies are needed to evaluate sludge samples collected from different sources and/or undergoing different types of treatment. © 2013 Elsevier Inc.
Resumo:
The use of cover crops has been suggested as an effective method to maintain and/or increase the organic matter content, while maintaining and/or enhancing the soil physical, chemical and biological properties. The fertility of Cerrado soils is low and, consequently, phosphorus levels as well. Phosphorus is required at every metabolic stage of the plant, as it plays a role in the processes of protein and energy synthesis and influences the photosynthetic process. This study evaluated the influence of cover crops and phosphorus rates on soil chemical and biological properties after two consecutive years of common bean. The study analyzed an Oxisol in Selvíria (Mato Grosso do Sul, Brazil), in a randomized block, split plot design, in a total of 24 treatments with three replications. The plot treatments consisted of cover crops (millet, pigeon pea, crotalaria, velvet bean, millet + pigeon pea, millet + crotalaria, and millet + velvet bean) and one plot was left fallow. The subplots were represented by phosphorus rates applied as monoammonium phosphate (0, 60 and 90 kg ha-1 P2O5). In August 2011, the soil chemical properties were evaluated (pH, organic matter, phosphorus, potential acidity, cation exchange capacity, and base saturation) as well as biological variables (carbon of released CO2, microbial carbon, metabolic quotient and microbial quotient). After two years of cover crops in rotation with common bean, the cover crop biomass had not altered the soil chemical properties and barely influenced the microbial activity. The biomass production of millet and crotalaria (monoculture or intercropped) was highest. The biological variables were sensitive and responded to increasing phosphorus rates with increases in microbial carbon and reduction of the metabolic quotient.