141 resultados para sensorisk deprivation.


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Hypothalamic paraventricular nucleus (PVN) has an important role in the regulation of water and sodium intake. Several researches described the presence of 5-HT1 receptors in the central nervous system. 5-HTIA was one of the prime receptors identified and it is found in the somatodendritic and post-synaptic forms. Therefore, the aim of this study was to investigate the participation of serotonergic 5-HT1A receptors in the PVN on the sodium intake induced by sodium depletion followed by 24 h of deprivation (injection of the diuretic furosemide plus 24 h of sodium-deficient diet). Rats (280-320 g) were submitted to the implant of cannulas bilaterally in the PVN. 5-HT injections (10 and 20 mu g/0.2 mu l) in the PVN reduced NaCl 1.8% intake. 8-OH-DPAT injections (2.5 and 5.0 fig/0.2 mu l) in the PVN also reduced NaCl 1.8% intake. pMPPF bilateral injections (5-HT1A antagonist) previously to 8-OH-DPAT injections have completely blocked the inhibitory effect over NaCl 1.8% intake. 5-HT1A antagonists partially reduced the inhibitory effect of 5-HT on NaCl 1.8% intake induced by sodium depletion. In contrast, the intake of palatable solution (2% sucrose) under body fluid-replete conditions was not changed after bilateral PVN 8-OH-DPTA injections. The results show that 5HT(1A) serotonergic mechanisms in the PVN modulate sodium intake induced by sodium loss. The finding that sucrose intake was not affected by PVN 5-HT1A activation suggests that the effects of the 5-HT1A treatments on the intake of NaCl are not due to mechanisms producing a nonspecific decrease of all ingestive behaviors. (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The present experiments were conducted to investigate die role of the alpha(1A)-, alpha(1B)-, beta(1)-, beta(2)-adrenoceptors, and the effects of losartan and CGP42112A (selective ligands of the AT(1) and AT(2) angiotensin receptors, respectively) on the water and sodium intake elicited by paraventricular nucleus (PVN) injection of adrenaline. Male Holtzman rats with a stainless steel cannula implanted into the PVN were used. The ingestion of water and sodium was determined in separate groups submitted to water deprivation or sodium depletion with the diuretic furosemide (20 mg/rat). 5-Methylurapidil (an alpha(1A)-adrenergic antagonist) and ICI-118,551 (a beta(2)-adrenergic antagonist) injected into the PVN produced a dose-dependent increase, whereas cyclazosin (an alpha(1B)-adrenergic antagonist) and atenolol (a beta(1)-adrenergic antagonist) do not affect the inhibitory effect of water intake induced by adrenaline. on the other hand, the PVN administration of adrenaline increased the sodium intake in a dose-dependent manner. Previous injection of the alpha(1A) and beta(1) antagonists decreased, whereas injection of the alpha(1B) and beta(2) antagonists increased the salt intake induced by adrenaline. In rats with several doses of adrenaline into PVN, the previous administration of losartan increased in a dose-dependent manner the inhibitory effect of adrenaline and decreased the salt intake induced by adrenaline, while PVN CGP42112A was without effect. These results indicate that both appetites are mediated primarily by brain AT(1) receptors. However, the doses of losartan were more effective when combined with the doses of CGP42112A than given alone p < 0.05, suggesting that the water and salt intake effects of PVN adrenaline may involve activation of multiple angiotensin II (ANG II) receptors subtypes. (C) 2003 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The paraventricular nucleus (PVN) may be considered as a dynamic mosaic of chemically-specified subgroups of neurons. 5-HT1A is one of the prime receptors identified and there is expressed throughout all magnocellular regions of the PVN. Several reports have demonstrated that a subpopulation of the magnocellular neurons expressing 5-HT1A receptors are oxytocin (OT) neurons and activation of 5-HT1A receptors in the PVN increases the plasma OT. Increasing evidence shows that OT inhibits water intake and increases urinary excretion in rats. The aim of this study was to investigate the role of serotonergic 5-HT1A receptors in the lateral-medial posterior magnocellular region of the PVN in the water intake and diuresis induced by 24 h of water deprivation. Cannulae were implanted in the PVN of rats. 5-HT injections in the PVN reduced water intake and increased urinary excretion. 8-OH-DPAT (a 5-HT1A agonist) injections blocked the water intake and increased urinary output in all the periods of the observation. pMPPF (a 5-HT1A antagonist) injected bilaterally before the 8-OH-DPAT blocked its inhibitory effect on water intake and its diuretic effect. We suggest that antidipsogenic and diuretic responses seem to be mediated via 5-HT1A receptors of the lateral-medial posterior magnocellular region of the PVN in water-deprived rats. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Besides other physiological functions, adenosine-5'-triphosphate (ATP) is also a neurotransmitter that acts on purinergic receptors. In spite of the presence of purinergic receptors in forebrain areas involved with fluid-electrolyte balance, the effect of ATP on water intake has not been investigated. Therefore, we studied the effects of intracerebroventricular (icv) injections of ATP (100, 200 and 300 nmol/µL) alone or combined with DPCPX or PPADS (P1 and P2 purinergic antagonists, respectively, 25 nmol/µL) on water intake induced by water deprivation. In addition, the effect of icv ATP was also tested on water intake induced by intragastric load of 12% NaCl (2 mL/rat), acute treatment with the diuretic/natriuretic furosemide (20 mg/kg), icv angiotensin II (50 ng/µL) or icv carbachol (a cholinergic agonist, 4 nmol/µL), on sodium depletion-induced 1.8% NaCl intake, and on food intake induced by food deprivation. Male Holtzman rats (280-320 g, N = 7-11) had cannulas implanted into the lateral ventricle. Icv ATP (300 nmol/µL) reduced water intake induced by water deprivation (13.1 ± 1.9 vs saline: 19.0 ± 1.4 mL/2 h; P < 0.05), an effect blocked by pre-treatment with PPADS, but not DPCPX. Icv ATP also reduced water intake induced by NaCl intragastric load (5.6 ± 0.9 vs saline: 10.3 ± 1.4 mL/2 h; P < 0.05), acute furosemide treatment (0.5 ± 0.2 vs saline: 2.3 ± 0.6 mL/15 min; P < 0.05), and icv angiotensin II (2.2 ± 0.8 vs saline: 10.4 ± 2.0 mL/2 h; P < 0.05), without changing icv carbachol-induced water intake, sodium depletion-induced 1.8% NaCl intake and food deprivation-induced food intake. These data suggest that central ATP, acting on purinergic P2 receptors, reduces water intake induced by intracellular and extracellular dehydration.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This study investigated the importance of androgen on responses to alpha and beta (norepinephrine) and alpha(1) (phenylephrine and methoxamine) agonists in vasa deferentia isolated from adult, immature, cryptorchid, and castrated rats submitted to swimming-induced acute stress. The participation of adrenergic nervous terminals was also investigated. Acute stress was shown to induce a significant subsensitivity to norepinephrine only in vas deferens from adult rats with normal levels of androgens. In addition, sympathetic denervation of the vas deferens prevented the appearance of subsensitivity. Subsensitivity was not seen when the experiments were carried out using phenylephrine and methoxamine. This shows that subsensitivity to norepinephrine in this acute stress situation may depend on other factors such as neuronal uptake, but not on alpha(1)-adrenoceptor response. Thus, when animals are exposed to acute stressogenic situations, this subsensitivity requires physiological levels of androgens to establish, and may also be involved in body homeostasis. (C) 1999 Academic Press.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We tested the correlation between growth rate before and after a food deprivation phase in twelve single held Nile tilapias, Oreochromis niloticus. The experiment was divided into three phases: before food deprivation (phase 1: 15 d), food deprivation (phase 2: 12 d) and refeeding (phase 3: 15 d). The specific growth rate - SGR, food conversion efficiency - FCE and feed ingestion increased significantly during phase 3. Positive and significant correlations were found either to SGR or to feed ingestion between Phase 1 and 3 but not for FCE. The SGR on phase 3, moreover, were positively correlated to FCE and feed ingestion, while on phase 1 SGR was positively correlated to FCE only. Thus, high pre-fasting SGR or feed ingestion reflects in likewise high post-fasting SGR or feed ingestion values. Moreover, since SGR and FCE are correlated to each other in both phase 1 and 3, but phase 3 SGR is also correlated to feed ingestion; we could suppose that hyperphagic behaviour could be the main compensatory mechanism. Accordingly, we suggest that a fish with an elevated growth performance shall display a proportionally raised post-fasting growth response in order to normalize its predetermined growth trajectory and resume its normal growth rate.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The activity of cytoplasmic and mitochondrial phosphoenolpyruvate carboxykinase (PEPCK) in kidney and liver, and in vivo gluconeogenic activity, were determined during different phases of prolonged fasting in quails. The fasting-induced changes in the activity of kidney cytoplasmic PEPCK were positively correlated with the changes in gluconeogenesis. Both activities increased at the initial phase (I) of fasting to levels 65% to 100% higher than fed values, and decreased during the protein-sparing period (phase II), although remaining higher than in fed birds. At the catabolic final phase (III) both kidney cytoplasmic PEPCK activity and gluconeogenesis increased markedly, attaining levels 115% to 150% higher than fed values. The activity of liver cytoplasmic PEPCK, present in appreciable amounts in quails, did not change during phases I and II of fasting, but increased to levels 60% higher than fed values at the final phase (III). Plasma glucose levels at phase III did not differ significantly from those at phases I and II. In both kidney and liver the activity of the mitochondrial PEPCK was not significantly affected by fasting. The data suggest that the kidney cytoplasmic PEPCK is the main enzyme responsible for gluconeogenesis adjustments during food deprivation in quails, and that this function is complemented at the final phase by enzyme present in liver cytosol.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Metabolic changes during the transition from post-feeding to fasting were studied in Brycon cephalus, an omnivorous teleost from the Amazon Basin in Brazil. Body weight and somatic indices (liver and digestive tract), glycogen and glucose content in liver and muscle, as well as plasma glucose, free fatty acids (FFA), insulin and glucagon levels of B. cephalus, were measured at 0, 12, 24, 48, 72, 120, 168 and 336 h after the last feeding. At time 0 h (the moment of food administration, 09.00 h) plasma levels of insulin and glucagon were already high, and relatively high values were maintained until 24 h post-feeding. Glycemia was 6.42 +/- 0.82 mM immediately after food ingestion and 7.53 +/- 1.12 MM at 12 h. Simultaneously, a postprandial replenishment of liver and muscle glycogen reserves was observed. Subsequently, a sharp decrease of plasma insulin occurred, from 7.19 +/- 0.83 ng/ml at 24 h of fasting to 5.27 +/- 0.58 ng/ml at 48 h. This decrease coincided with the drop in liver glucose and liver glycogen, which reached the lowest value at 72 h of fasting (328.56 +/- 192.13 and 70.33 +/- 14.13 mumol/g, respectively). Liver glucose increased after 120 h and reached a peak 168 h post-feeding, which suggests that hepatic gluconeogenesis is occurring. Plasma FFA levels were low after 120 and 168 h and increased again at 336 h of fasting. During the transition from post-feeding to fast condition in B. cephalus, the balance between circulating insulin and glucagon quickly adjust its metabolism to the ingestion or deprivation of food. (C) 2002 Elsevier B.V. All rights reserved.