103 resultados para screw coating surface


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Spongiolite from Mato Grosso do Sul (Brazil), natural inorganic composite constituted of silica needles, was treated with concentrated phosphoric acid at high temperatures. Superficial coating of the needles was proved to be constituted of silicon diphosphate, a compound offering six-coordinated silicon sites. Owing to the affinity of three charged ions to phosphate groups, this coating acts as specific adsorbent for the rare earth elements which prefer octahedral coordination (starting from samarium, yttrium included). The uptake of lanthanum and neodymium are significantly lower due to different coordination tendencies. Lanthanide fixation upon silica with PO4 groups anchored on its surface may be useful in the manufacturing of special phosphate-silicate glasses. (C) 2003 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Objectives. This study evaluated the effect of two different surface conditioning methods on the repair bond strength of a bis-GMA-adduct/bis-EMA/TEGDMA based resin composite after three aging conditions.Methods. Thirty-six composite resin blocks (Esthet X, Dentsply) were prepared (5 mm x 6 mm x 6 mm) and randomly assigned into three groups for aging process: (a) immersion in citric acid (pH 3.0 at 37 degrees C, 1 week) (CA); (b) boiling in water for 8h (BW) and (c) thermocycling (x5000, 5-55 degrees C, dwell time: 30s) (TC). After aging, the blocks were assigned to one of the following surface conditioning methods: (1) silica coating (30 mu m SiOx) (CoJet, 3M ESPE) + silane (ESPE-Sil) (CJ), (2) phosphoric acid + adhesive resin (Single Bond, 3M ESPE) (PA). Resin composite (Esthet.X (R)) was bonded to the conditioned substrates incrementally and light polymerized. The experimental groups formed were as follows: Gr1:CA + PA; Gr2:CA + CJ Gr3:BW + PA; Gr4: BW + CJ; Gr5:TC + PA; Gr6: TC + CJ. The specimens were sectioned in two axes (x and y) with a diamond disc under coolant irrigation in order to obtain non-trimmed bar specimens (sticks, 10 mm x 1 mm x 1 mm) with 1 mm(2) of bonding area. The microtensile test was accomplished in a universal testing machine (crosshead speed: 0.5 mm min(-1)).Results. The means and standard deviations of bond strength (MPa +/- S.D.) per group were as follows: Gr1: 25.5 +/- 10.3; Gr2: 46.3 +/- 10.1; Gr3: 21.7 +/- 7.1; Gr4: 52.3 +/- 15.1; GrS: 16.1 +/- 5.1; Gr6, 49.6 +/- 13.5. The silica coated groups showed significantly higher mean bond values after all three aging conditions (p < 0.0001) (two-way ANOVA and Tukey tests, alpha = 0.05). The interaction effect revealed significant influence of TC aging on both silica coated and acid etched groups compared to the other aging methods (p < 0.032). Citric acid was the least aggressive aging medium.Significance. Chairside silica coating and silanization provided higher resin-resin bond strength values compared to acid etching with phosphoric acid followed by adhesive resin applications. Thermocycling the composite substrates resulted in the lowest repair bond strength compared to citric acid challenge or boiling in water. (C) 2006 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Statement of problem. Ceramic surface treatment is crucial for bonding to resin. High crystalline ceramics are poorly conditioned using traditional procedures.Purpose. The purpose of this study was to evaluate the effect of silica coating on a densely sintered alumina ceramic relative to its bond strength to composite, using a resin luting agent.Material and methods. Blocks (6 X 6 X 5 mm) of ceramic and composite were made. The ceramic (Procera AllCeram) surfaces were polished, and the blocks were divided into 3 groups (n = 5): SB, airborne-particle abrasion with 110-mu m Al(2)O(3); RS, silica coating using Rocatec System; and CS, silica coating using CoJet System. The treated ceramic blocks were luted to the composite (W3D Master) blocks using a resin luting agent (Panavia F). Specimens were stored in distilled water at 37 degrees C for 7 days and then Cut in 2 axes, x and y, to obtain specimens with a bonding area of approximately 0.6 mm(2) (n = 30). The specimens were loaded to failure in tension in a universal testing machine, and data were statistically analyzed using a randomized complete block design analysis of variance and Tukey's test (alpha=.05). Fractured surfaces were examined using light microscopy and scanning electron microscopy to determine the type of failure. Energy-dispersive spectroscopy was used for surface compositional analysis.Results. Mean bond strength values (MPa) of Groups RS (17.1 +/- 3.9) (P = .00015) and CS (18.5 +/- 4.7) (P=.00012) were significantly higher than the values of Group SB (12.7 +/- 2.6). There was no statistical difference between Groups RS and CS. All failures occurred at the adhesive zone.Conclusion. Tribochemical silica coating systems increased the tensile bond strength values between Panavia F and Procera AllCeram ceramic.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

SnO2 coatings were deposited by a sol-gel dip-coating process to shield fluoroindate glasses (40In-F-3:16BaF(2):20SrF(2):20ZnF(2):2NaF:2GaF(3)) against corrosion in aqueous environments. The effect of the number of coating applications and of the withdrawal speed on the thickness, density and roughness of tin oxide films was investigated by X-ray reflectivity. Film thickness increases both with the number of coating applications and the withdrawal speed. The aqueous leaching of uncoated and SnO2-coated fluoroindate glasses was studied by scanning electron microscopy (SEM) and infrared spectroscopy (FTIR), showing that the glass surface was protected against hydrolytic attack. (C) 1999 Elsevier B.V. B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

To obtain SnO2 films to be used for surface protection of fluoride glasses, a non-aqueous sol-gel route for the preparation was developed. An ethanolic SnO2 colloidal suspension was prepared by thermohydrolysis of SnCl4 solution at 70 degreesC. By using this procedure, redispersable powders with nanometer sized particles were obtained. Films were obtained by dip coating on glass and mica substrates. The structures of the ethanolic precursor suspension and films were compared to those of similar samples prepared by the classical aqueous sol-gel route. Comparative analyses performed by photon correlation spectroscopy demonstrated that the powders obtained by freeze-drying are fully redispersable either in aqueous or in alcoholic solutions at pH greater than or equal to 8. As prepared sols and redispersed colloidal suspensions have hydrodynamic radius distribution (2-14 nm) with an average size close to 7 nm. The variations in film structures with firing temperature were investigated by small-angle X-ray scattering and X-ray reflectometry. The experimental results show that the films have a two level porous structure composed of agglomerates of primary colloidal particles. The sintering of the primary particles leads to the densification of agglomerates and to the formation of inter-agglomerate spatially correlated pores. The volume fraction of intra-agglomerate pores is reduced from approximate to 50% to approximate to 30% by the precipitation of precursor salts partially hydrolyzed in ethanolic solution. (C) 2001 Elsevier B.V. B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Antimony doped tin oxide thin films were deposited on glass by a chemical route derived from Pechini method. Particular emphasis was given to the microstructure of crystallized films. Crystalline phase formation was studied by grazing incident X-ray diffraction and by thermal analyses. Scanning electron microscopy was carried out for microstructure characterization, surface roughness was observed using scanning tunneling microscope and the optical transmittance measurements were performed in the wavelength range of 200-800 nm. (C) 2002 Kluwer Academic Publishers.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This work presents the study of substrate surface effects on rhodamine B-containing silica films obtained from TEOS (tetraethylorthosilicate) acid hydrolysis. Soda-lime glass substrates were treated with basic solution under different reaction times and temperatures. Rhodamine B-containing silica films were deposited on pre-treated substrates by the spin-coating method. The substrate surface directly affects film morphology and homogeneity. The films are formed by packed silica spheres which protect the dye against acid-base attack. Luminescence spectra present shifts on the dye emission maximum as expected for different pH values on the substrate surface depending on the alkaline treatment. (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The surface corrosion process associated with the hydrolysis of fluorozirconate glass, Z-BLAN (53ZrF(4), 20BaF(2), 20NaF, 4LaF(2), 3AlF(3)), and the corrosion protection efficiency of a nanocrystalline transparent SnO2 layer were investigated by X-ray photoelectron spectroscopy. The tin oxide film was deposited by the sol-gel dip-coating process in the presence of Tiron(R) as particle surface modifier agent. The chemical bonding structure and composition of the surface region of coated and non-coated ZBLAN were studied before water contact and after different immersion periods (5-30 min). In contrast to the effects occurring for non-coated glass, where the surface undergoes a rapid selective dissolution of the most soluble species inducing the formation of a new surface phase consisting of stable zirconium oxyfluoride, barium fluoride and lanthanum fluoride species, the results for the SnO2-coated glass showed that the hydrolytic attack induces a filling of the film nanopores by dissolved glass material and the formation of tin oxylluoride and zirconium oxyfluoride species. This process results in a modified film, which acts as a hermetic diffusion barrier protecting efficiently the glass surface. (C) 2006 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this work, the performance of a-C: H films produced by the hybrid Plasma Immersion Ion Implantation and Deposition technique as lubricating layers for a steel forming tool has been investigated. Hardened steel (AISI M2, 64 HRC) plates coated with a commercial TiN layer were used as substrates and the films were deposited in a vacuum chamber fitted with two parallel-plate electrodes. The discharges were generated in atmospheres composed of 91% C2H2 and 9% Ar by the application of radiofrequency power (13.56 MHz, 100 W) to the upper electrode while the lower one, also used as the sample holder, was biased with high voltage negative pulses (3.6 kV, 30 mu s, 300 Hz). A deposition time of 840 s was used. The effects of the gas pressure, p, on thickness, molecular structure, wettability, surface morphology and topography, hardness and friction coefficient of the films lwere investigated. Film thickness increased from 0.3 to 0.5 mu m when p was increased from 2.7 to 16.5 Pa. Generally, the films were slightly hydrophilic, with contact angles of around 84 degrees, and the deposition decreased the roughness of the steel. A polymer-like structure was detected in high pressure depositions and an amorphous carbon structure derived from the low pressure procedures. Hardness decreased from 8.2 to 7.0 GPa with increasing p. Improvement in tribological performance was indicated by the fall in the friction coefficient from 0.5 to 0.2 as the deposition pressure was reduced. Operating at the latter value (of mu) would lead to a significant reduction in wear and hence to significant economy in diverse industrial applications.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In orofacial implantology there are many types of implants for the different systems. Among these is the implant surface type, e.g., a screw type, cylindrical and laminar. Furthermore, the implants are different in their dimensions, their metal composition, their surface condition, such as smooth, grit or layered surfaces and in their methods of application. Two different self-tapping implants, one smooth and the other grit-blasted, are screwed into the bone, and another one with a plasma of titanium coating, which is also in a screw form but with greater spaces between the screw threads are compared. The greatest amount of bone deposition in the bone/implant interface was encountered in the latter one, the smooth surfaced implant being in second place. All of these systems can alter the implant healing process and to demonstrate this, we injected bone markers in the rabbits over different periods of time so as to observe the different areas of bone deposition in the tibias where the implants had been inserted. The bone tracers used were Alizarin, Calcein and Xylenol-orange. The amount of deposition was calculated by using the method of surface morphometry.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

For retarding carbon oxidation in refractories during the preheating of metallurgical furnaces, a ceramic coating, made mainly of sodium phosphosilicate and clay was developed. The coating presents high adherence to the substrate with no swelling. The coating was characterized by thermal analysis, X-ray diffraction at room temperature (XRD) and at high temperature (HTXRD), X-ray fluorescence and scanning electronic microscopy (SEM). The glass transition temperature is reached at 800 °C and only glassy phase is observed above this temperature. Thus the mechanism of protection seems to be the formation of a glassy phase on the surface of the refractory, and the coating tends to be more efficient at temperatures higher than 800 °C.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Polymeric precursor solution was used to deposit LiNbO3 thin films by dip coating on sapphire substrates. The effects of processing variables, such as heat treatment conditions and number of deposited layers, on crystallinity and morphology of the final films were investigated. X-ray diffraction patterns show the oriented growth of the films. The rocking curves, obtained around the (006) LiNbO3 peak, revealed that the shape peak and the FWHM value were influenced by the processing variables. According to these parameters, some films presented very homogeneous dense and smooth surfaces, as shown by the SEM and AFM studies.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In cases of decorative and functional applications, chromium results in protection against wear and corrosion combined with chemical resistance and good lubricity. However, pressure to identify alternatives or to improve conventional chromium electroplating mechanical characteristics has increased in recent years, related to the reduction in the fatigue strength of the base material and to environmental requirements. The high efficiency and fluoride-free hard chromium electroplating is an improvement to the conventional process, considering chemical and physical final properties. One of the most interesting, environmentally safer and cleaner alternatives for the replacement of hard chrome plating is tungsten carbide thermal spray coating, applied by the high velocity oxy-fuel (HVOF) process. The aim of this study was to analyse the effects of the tungsten carbide thermal spray coating applied by the HP/HVOF process and of the high efficiency and fluoride-free hard chromium electroplating (in the present paper called 'accelerated'), in comparison to the conventional hard chromium electroplating on the AISI 4340 high strength steel behaviour in fatigue, corrosion, and abrasive wear tests. The results showed that the coatings were damaging to the AISI 4340 steel behaviour when submitted to fatigue testing, with the tungsten carbide thermal spray coatings showing the better performance. Experimental data from abrasive wear tests were conclusive, indicating better results from the WC coating. Regarding corrosion by salt spray test, both coatings were completely corroded after 72 h exposure. Scanning electron microscopy technique (SEM) and optical microscopy were used to observe crack origin sites, thickness and adhesion in all the coatings and microcrack density in hard chromium electroplatings, to aid in the results analysis. © 2001 Elsevier Science B.V. All rights reserved.