50 resultados para scientific computation
Resumo:
We have developed a method to compute the albedo contrast between dust devil tracks and their surrounding regions on Mars. It is mainly based on Mathematical Morphology operators and uses all the points of the edges of the tracks to compute the values of the albedo contrast. It permits the extraction of more accurate and complete information, when compared to traditional point sampling, not only providing better statistics but also permitting the analysis of local variations along the entirety of the tracks. This measure of contrast, based on relative quantities, is much more adequate to establish comparisons at regional scales and in multi-temporal basis using imagery acquired in rather different environmental and operational conditions. Also, the substantial increase in the details extracted may permit quantifying differential depositions of dust by computing local temporal fading of the tracks with consequences on a better estimation of the thickness of the top most layer of dust and the minimum value needed to create dust devils tracks. The developed tool is tested on 110 HiRISE images depicting regions in the Aeolis, Argyre, Eridania, Noachis and Hellas quadrangles. As a complementary evaluation, we also performed a temporal analysis of the albedo in a region of Russell crater, where high seasonal dust devil activity was already observed before, comprising the years 2007-2012. The mean albedo of the Russell crater is in this case indicative of dust devil tracks presence and, therefore, can be used to quantify dust devil activity. (C) 2014 Elsevier Inc. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
One of the key issues which makes the waveletGalerkin method unsuitable for solving general electromagnetic problems is a lack of exact representations of the connection coefficients. This paper presents the mathematical formulae and computer procedures for computing some common connection coefficients. The characteristic of the present formulae and procedures is that the arbitrary point values of the connection coefficients, rather than the dyadic point values, can be determined. A numerical example is also given to demonstrate the feasibility of using the wavelet-Galerkin method to solve engineering field problems. © 2000 IEEE.
Resumo:
Superficial stains and irregularities of the enamel are generally what prompt patients to seek dental intervention to improve their smile. These stains or defects may be due to hypoplasia, amelogenesis imperfecta, mineralized white spots, or fluorosis, for which enamel microabrasion is primarily indicated. Enamel microabrasion involves the use of acidic and abrasive agents, such as with 37% phosphoric acid and pumice or 6% hydrochloric acid and silica, applied to the altered enamel surface with mechanical pressure from a rubber cup coupled to a rotatory mandrel of a low-rotation micromotor. If necessary, this treatment can be safely combined with bleaching for better esthetic results. Recent studies show that microabrasion is a conservative treatment when the enamel wear is minimal and clinically imperceptible. The most important factor contributing to the success of enamel microabrasion is the depth of the defect, as deeper, opaque stains, such as those resulting from hypoplasia, cannot be resolved with microabrasion, and require a restorative approach. Surface enamel alterations that result from microabrasion, such as roughness and microhardness, are easily restored by saliva. Clinical studies support the efficacy and longevity of this safe and minimally invasive treatment. The present article presents the clinical and scientific aspects concerning the microabrasion technique, and discusses the indications for and effects of the treatment, including recent works describing microscopic and clinical evaluations.