52 resultados para respiratory frequency
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Central mechanisms of coupling between respiratory and sympathetic systems are essential for the entrainment between the enhanced respiratory drive and sympathoexcitation in response to hypoxia. However, the brainstem nuclei and neuronal network involved in these respiratory-sympathetic interactions remain unclear. Here, we evaluated whether the increase in expiratory activity and expiratory-modulated sympathoexcitation produced by the peripheral chemoreflex activation involves the retrotrapezoid nucleus/parafacial respiratory region (RTN/pFRG). Using decerebrated arterially perfused in situ rat preparations (60–80 g), we recorded the activities of thoracic sympathetic (tSN), phrenic (PN), and abdominal nerves (AbN) as well as the extracellular activity of RTN/pFRG expiratory neurons, and reflex responses to chemoreflex activation were evaluated before and after inactivation of the RTN/pFRG region with muscimol (1 mM). In the RTN/pFRG, we identified late-expiratory (late-E) neurons (n = 5) that were silent at resting but fired coincidently with the emergence of late-E bursts in AbN after peripheral chemoreceptor activation. Bilateral muscimol microinjections into the RTN/pFRG region (n = 6) significantly reduced basal PN frequency, mean AbN activity, and the amplitude of respiratory modulation of tSN (P < 0.05). With respect to peripheral chemoreflex responses, muscimol microinjections in the RTN/pFRG enhanced the PN inspiratory response, abolished the evoked late-E activity of AbN, but did not alter either the magnitude or pattern of the tSN reflex response. These findings indicate that the RTN/pFRG region is critically involved in the processing of the active expiratory response but not of the expiratory-modulated sympathetic response to peripheral chemoreflex activation of rat in situ preparations.
Resumo:
Diottix(r) was calibrated at 25 Hz to achieve the frequency indicated in literature as being effective to mobilize the airways secretions. However, the amplitude and frequency of the waves generated by the equipment in different regions of the chest still need to be investigated. The objective of this study was to analyze the frequency and amplitude of waves generated by Diottix(r) in chests of healthy subjects. Diottix(r) was used in the anterior and posterior regions of the chest. The mechanical waves were captured using stethoscopes connected to electret microphones, which were connected to a digital oscilloscope. Frequency and amplitude data were recorded by the stethoscope, positioned in six points in the anterior region and six in the posterior region of the chest, following the positions commonly used in pulmonary auscultation. Signals were recorded and transferred to a computer with software for their analysis. The frequency of waves did not present a significant change (from 24.9 to 26.4 Hz). The wave amplitude in the anterior versus the posterior region in each area of the lung, the upper, middle and lower, had differences. Diottix(r) produces frequencies in the chest according to the calibrated; thus, it can be a complementary resource to bronchial hygiene maneuvers. The amplitudes of waves seem to be affected by other structures like bone parts and heart.
Resumo:
Objectives: The effectiveness of noninvasive positive-pressure ventilation in preventing reintubation due to respiratory failure in children remains uncertain. A pilot study was designed to evaluate the frequency of extubation failure, develop a randomization approach, and analyze the feasibility of a powered randomized trial to compare noninvasive positive-pressure ventilation and standard oxygen therapy post extubation for preventing reintubation within 48 hours in children with respiratory failure.Design: Prospective pilot study.Setting: PICU at a university-affiliated hospital.Patients: Children aged between 28 days and 3 years undergoing invasive mechanical ventilation for greater than or equal to 48 hours with respiratory failure after programmed extubation.Interventions: Patients were prospectively enrolled and randomly assigned into noninvasive positive-pressure ventilation group and inhaled oxygen group after programmed extubation from May 2012 to May 2013.Measurements and Main Results: Length of stay in PICU and hospital, oxygenation index, blood gas before and after tracheal extubation, failure and reason for tracheal extubation, complications, mechanical ventilation variables before tracheal extubation, arterial blood gas, and respiratory and heart rates before and 1 hour after tracheal extubation were analyzed. One hundred eight patients were included (noninvasive positive-pressure ventilation group, n = 55 and inhaled oxygen group, n = 53), with 66 exclusions. Groups did not significantly differ for gender, age, disease severity, Pediatric Risk of Mortality at admission, tracheal intubation, and mechanical ventilation indications. There was no statistically significant difference in reintubation rate (noninvasive positive-pressure ventilation group, 9.1%; inhaled oxygen group, 11.3%; p > 0.05) and length of stay (days) in PICU (noninvasive positive-pressure ventilation group, 3 [116]; inhaled oxygen group, 2 [1-25]; p > 0.05) or hospital (noninvasive positive-pressure ventilation group, 19 [7-141]; inhaled oxygen group, 17 [8-80]).Conclusions: The study indicates that a larger randomized trial comparing noninvasive positive-pressure ventilation and standard oxygen therapy in children with respiratory failure is feasible, providing a basis for a future trial in this setting. No differences were seen between groups. The number of excluded patients was high.
Resumo:
Purpose. The present study aimed to compare actors/actresses's voices and vocally trained subjects through aerodynamic and electroglottographic (EGG) analyses. We hypothesized that glottal and breathing functions would reflect technical and physiological differences between vocally trained and untrained subjects.Methods. Forty participants with normal voices participated in this study (20 professional theater actors and 20 untrained participants). In each group, 10 male and 10 female subjects were assessed. All participants underwent aerodynamic and EGG assessment of voice. From the Phonatory Aerodynamic System, three protocols were used: comfortable sustained phonation with EGG, voice efficiency with EGG, and running speech. Contact quotient was calculated from EGG. All phonatory tasks were produced at three different loudness levels. Mean sound pressure level and fundamental frequency were also assessed. Univariate, multivariate, and correlation statistical analyses were performed.Results. Main differences between vocally trained and untrained participants were found in the following variables: mean sound pressure level, phonatory airflow, subglottic pressure, inspiratory airflow duration, inspiratory airflow, and inspiratory volume. These variables were greater for trained participants. Mean pitch was found to be lower for trained voices.Conclusions. The glottal source seemed to have a weak contribution when differentiating the training status in speaking voice. More prominent changes between vocally trained and untrained participants are demonstrated in respiratory-related variables. These findings may be related to better management of breathing function (better breath support).
Resumo:
1. Respiratory rates of workers of the leaf cutting ant Atta sexdens rubropilosa were measured at different oxygen pressures, at 25°C. 2. In experiments where different ants were used at each of the oxygen pressures, respiration was regulated down to 70.8 mmHg. 3. When the same ants were submitted in sequence to declining pO2, the 'oxygen dependence indexes' (Tang P.S. (1933) Quart. Rev. Biol. 8, 260-274) also suggested a good regulatory capacity. 4. The results are discussed in terms of the variation of the partial pressures of O2 and CO2 that the ants probably encounter when wandering to and from the nest to forage, and when performing their heavy tasks (leaf transport, offspring and fungus care). 5. CO2 rise and O2 fall, from ants' respiration inside the ant hill, may act as the factors that, in a reflex way, keep the spiracles open and increase ventilation and the frequency of CO2 emission to keep the oxygen supply adequate to face the energetic demand of the routine level of activity of the workers, when passing from normoxia (air) to hypoxia (in nest galleries).