136 resultados para quantum 2
Resumo:
A spectrum-generating q-algebra, within the framework of SUq(2), as firstly suggested by Iachello, is studied in order to describe the mass spectrum of three generations of quarks and leptons. The SUq(2) quantum group is a q-deformed extension of SU(2), where q = e(alpha) (with alpha real) is the deformation parameter. In this work, the essential use of inequivalent representations of SUq(2) is introduced. The inequivalent representations are labelled by (j, nu(0)), where j = 0, 1/2, 1, ... and nu(0) is a positive real number. A formula for the fermion masses M-m(j, nu(0)), with -j less than or equal to m less than or equal to j is derived. As an example, a possible scheme which corresponds to two triplets (j = 1) associated to up and down quarks is presented here in some detail. They are associated to different values of the deformation parameter, indicating a dependence of the charge Q on the parameter alpha. The masses of the charged leptons are treated in a similar way. The current results show that some mass relations for quarks and leptons found in the literature can be considered as approximations of the equations obtained in the j = 1 representations. The breaking of SUq(2) necessary to describe the Cabibbo-Kobayashi-Maskawa (CKM) flavor mixing is briefly discussed.
Resumo:
GaAsSbN/GaAs strained-layer single quantum wells grown on a GaAs substrate by molecular-beam epitaxy with different N concentrations were studied using the photoluminescence (PL) technique in the temperature range from 9 to 296 K. A strong redshift in optical transition energies induced by a small increase in N concentration has been observed in the PL spectra. This effect can be explained by the interaction between a narrow resonant band formed by the N-localized states and the conduction band of the host semiconductor. Excitonic transitions in the quantum wells show a successive red/blue/redshift with increasing temperature in the 2-100 K range. The activation energies of nonradiative channels responsible for a strong thermal quenching are deduced from an Arrhenius plot of the integrated PL intensity. (C) 2003 American Institute of Physics.
Resumo:
From spinor and scalar (2 + 1)-dimensional QED effective actions at finite temperature and density in a constant magnetic field background, we calculate the corresponding virial coefficients for particles in the lowest Landau level. These coefficients depend on a parameter theta related to the time-component of the gauge field, which plays an essential role for large gauge invariance. The variation of the parameter theta might lead to an interpolation between fermionic and bosonic virial coefficients, although these coefficients are singular for theta = pi/2.
Resumo:
The magnetic-field and confinement effects on the Land, factor in AlxGa1-xAs parabolic quantum wells under magnetic fields applied parallel or perpendicular to the growth direction are theoretically studied. Calculations are performed in the limit of low temperatures and low electron density in the heterostructure. The g factor is obtained by taking into account the effects of non-parabolicity and anisotropy of the conduction band through the 2 x 2 Ogg-McCombe Hamiltonian, and by including the cubic Dresselhaus spin-orbit term. A simple formula describing the magnetic-field dependence of the effective Land, factor is analytically derived by using the Rayleigh-Schrodinger perturbation theory, and it is found in good agreement with previous experimental studies devoted to understand the behavior of the g factor, as a function of an applied magnetic field, in semiconductor heterostructures. Present numerical results for the effective Land, factor are shown as functions of the quantum-well parameters and magnetic-field strength, and compared with available experimental measurements.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
We extend the geometric treatment done for the Majorana-Weyl fermions in two dimensions by Sanielevici and Semenoff to chiral bosons on a circle. For this case we obtain a generalized Floreanini-Jackiw Lagrangian density, and the corresponding gravitational (or Virasoro) anomalies are found as expected. © 1989 The American Physical Society.
Resumo:
The space of labels characterizing the elements of Schwinger's basis for unitary quantum operators is endowed with a structure of symplectic type. This structure is embodied in a certain algebraic cocycle, whose main features are inherited by the symplectic form of classical phase space. In consequence, the label space may be taken as the quantum phase space: It plays, in the quantum case, the same role played by phase space in classical mechanics, some differences coming inevitably from its nonlinear character. © 1990 American Institute of Physics.
Resumo:
Some postulates are introduced to go from the classical Hamilton-Jacobi theory to the quantum one. We develop two approaches in order to calculate propagators, establishing the connection between them and showing the equivalence of this picture with more known ones such as the Schrödinger's and the Feynman's formalisms. Applications of the above-mentioned approaches to both the standard case of the harmonic oscillator and to the harmonic oscillator with time-dependent parameters are made. © 1991 Plenum Publishing Corporation.
Resumo:
The exact propagator beyond and at caustics for a pair of coupled and driven oscillators with different frequencies and masses is calculated using the path-integral approach. The exact wavefunctions and energies are also presented. Finally the propagator is re-calculated through an alternative method, using the δfunction. © 1992 IOP Publishing Ltd.
Resumo:
We compare exact and semiclassical Husimi distributions for the single eigenstates of a one-dimensional resonant Hamiltonian. We find that both distributions concentrate near the unstable fixed points even when these points are made complex by suitably varying a parameter. © 1992 The American Physical Society.
Resumo:
In this paper we investigate the behaviour of the Moukowski model within the mnten of quantum algebras. The Moszkwski Hamiltonian is diagonalized aractly for different numbers of panicles and for various values of the deformalion parameter of the quanlum algebra involved. We also include ranking in our system and observe its variation as a function of the deformation parameters. © 1992 IOP Publishing Ltd.
Resumo:
We present a different class of quantum-mechanical potentials. These are midway between the exactly solvable potentials and the quasiexactly ones. Their fundamental feature is that one can find the entire s-wave spectrum of a given potential, provided that some of its parameters are conveniently fixed. © 1993 The American Physical Society.
Resumo:
The relation between the spin and the mass of an infinite number of particles in a q-deformed dual string theory is studied. For the deformation parameter q a root of unity, in addition to the relation of such values of q with the rational conformal field theory, the Fock space of each oscillator mode in the Fubini-Veneziano operator formulation becomes truncated. Thus, based on general physical grounds, the resulting spin-(mass)2 relation is expected to be below the usual linear trajectory. For such specific values of q, we find that the linear Regge trajectory turns into a square-root trajectory as the mass increases.
Resumo:
The theory of macroscopic quantum tunneling is applied to a current-biased dc SQUID which constitutes a system of two interacting quantum degrees of freedom coupled to the environment. The decay probability is obtained in the exponential approximation for the overdamped case. Close to the critical driving force of the system, the decay of the metastable state is determined by a unique instanton solution describing the symmetric decay of the phases in each of the two Josephson juctions. Upon reducing the external driving force a new regime is reached where the instanton splits. The doubling of the decay channels reduces the decreasing of the decay rate in the quantum regime. A current-temperature phase diagram is constructed based on the Landau theory of phase transitions. Depending on the external parameters the system develops either a first- or a second-order transition to the split-instanton regime. © 1994 The American Physical Society.