48 resultados para power spectrum peak


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The characterization of the hyperbolic power-time (P-tlim) relationship using a two-parameter model implies that exercise tolerance above the asymptote (Critical Power; CP), i.e. within the severe intensity domain, is determined by the curvature (W') of the relationship. The purposes of this study were (1) to test whether the amount of work above CP (W>CP) remains constant for varied work rate experiments of high volatility change and (2) to ascertain whether W' determines exercise tolerance within the severe intensity domain. Following estimation of CP (208 ± 19 W) and W' (21.4 ± 4.2 kJ), 14 male participants (age: 26 ± 3; peak [Formula: see text]: 3708 ± 389 ml.min-1) performed two experimental trials where the work rate was initially set to exhaust 70% of W' in 3 ('THREE') or 10 minutes ('TEN') before being subsequently dropped to CP plus 10 W. W>CP for TEN (104 ± 22% W') and W' were not significantly different (P>0.05) but lower than W>CP for THREE (119 ± 17% W', P<0.05). For both THREE (r = 0.71, P<0.01) and TEN (r = 0.64, P<0.01), a significant bivariate correlation was found between W' and tlim. W>CP and tlim can be greater than predicted by the P-tlim relationship when a decrement in the work rate of high-volatility is applied. Exercise tolerance can be enhanced through a change in work rate within the severe intensity domain. W>CP is not constant.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The aim of this study was to evaluate the use of the running anaerobic sprint test (RAST) as a predictor of anaerobic capacity, compare it to the maximal accumulated oxygen deficit (MAOD) and to compare the RAST's parameters with the parameters of 30-s all-out tethered running on a treadmill. 39 (17.0±1.4 years) soccer players participated in this study. The participants underwent an incremental test, 10 submaximal efforts [50-95% of velocity correspondent to VO2MAX (vVO2MAX)] and one supramaximal effort at 110% of vVO2MAX for the determination of MAOD. Furthermore, the athletes performed the RAST. In the second stage the 30-s all-out tethered running was performed on a treadmill (30-s all-out), and compared with RAST. No significant correlation was observed between MAOD and RAST parameters. However, significant correlations were found between the power of the fifth effort (P5) of RAST with peak and mean power of 30-s all-out (r=0.73 and 0.50; p<0.05, respectively). In conclusion, the parameters from RAST do not have an association with MAOD, suggesting that this method should not be used to evaluate anaerobic capacity. Although the correlations between RAST parameters with 30-s all-out do reinforce the RAST as an evaluation method of anaerobic metabolism, such as anaerobic power.