101 resultados para mitochondrial swelling
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Eleven organic synthetic dyes, currently or formerly used as food colours in Brazil, were tested to determine their effect on mitochondrial respiration in mitochondria isolated from rat liver and kidney. The compounds tested were: Erythrosine, Ponceau 4R, Allura Red, Sunset yellow, Tartrazine, Amaranth, Brilliant Blue, Indigotine Blue, Fast Red E, Orange GGN and Scarlet GN. All food colours tested inhibited mitochondrial respiration (State III respiration, uncoupled) supported either by α-ketoglutarate or succinate. this inhibition varied largely, e.g. from 100% to 16% for Erythrosine and Tartrazine respectively, at a concentration of 0.1 mg food colour per mitochondrial protein. Both rat liver and kidney mitochondria showed similar patterns of inhibition among the food colours tested. This effect was dose related and the concentration to give 50% inhibition was determined for some of the dyes. The xanthene dye Erythrosine, which showed the strongest effect, was selected for further investigation on mitochondria in vivo.
Resumo:
In this study, we show that safranine at the concentrations usually employed as a probe of mitochondrial membrane potential significantly protects against the oxidative damage of mitochondria induced by Fe(II)citrate. The effect of safranine was illustrated by experiments showing that this dye strongly inhibits both production of thiobarbituric acid-reactive substances and membrane potential decrease when energized mitochondria were exposed to Fe(II)citrate in the presence of Ca 2+ ions. Similar results were obtained with the lipophylic compound trifluoperazine. It is proposed that, like trifluoperazine, safranine decreases the rate of lipid peroxidation due to its insertion in the membrane altering the physical state of the lipid phase.
Resumo:
Trifluoperazine (TFP) (35 μM) prevents mitochondrial transmembrane potential (ΔΨ) collapse and swelling induced by 10 μM Ca2+ plus oxyradicals generated from δ-aminolevulinic acid autoxidation. In contrast with EGTA, TFP cannot restore the totally collapsed ΔΨ. So, TFP might not remove Ca2+ from its 'harmful site', but could impair the ROS-driven cross-linking between membrane -SH proteins. Our data are correlated with the protective uses of TFP against oxidative processes promoted by oxyradicals plus Ca2+.
Resumo:
Due to the exclusively maternal inheritance of mitochondria, mitochondrial genotypes can be coupled to a particular nuclear genotype by continuous mating of founder females and their female offspring to males of the desired nuclear genotype. However, backcrossing is a gradual procedure that, apart from being lengthy, cannot ascertain that genetic and epigenetic changes will modify the original nuclear genotype. Animal cloning by nuclear transfer using host ooplasm carrying polymorphic mitochondrial genomes allows, among other biotechnology applications, the coupling of nuclear and mitochondrial genotypes of diverse origin within a single generation. Previous attempts to use Bos taurus oocytes as hosts to transfer nuclei from unrelated species led to the development to the blastocyst stage but none supported gestation to term. Our aim in this study was to determine whether B. taurus oocytes support development of nuclei from the closely related B. indicus cattle and to examine the fate of their mitochondrial genotypes throughout development. We show that indicus:taurus reconstructed oocytes develop to the blastocyst stage and produce live offspring after transfer to surrogate cows. We also demonstrate that, in reconstructed embryos, donor cell-derived mitochondria undergo a stringent genetic drift during early development leading, in most cases, to a reduction or complete elimination of B. indicus mtDNA. These results demonstrate that cross-subspecies animal cloning is a viable approach both for matching diverse nuclear and cytoplasmic genes to create novel breeds of cattle and for rescuing closely related endangered cattle.
Resumo:
A cDNA clone (designated ZmPUMP) encoding an uncoupling protein (UCP) from maize (Zea mays) was identified by searching for homologous sequences among the expressed sequence tags of the GenBank database. The ZmPUMP cDNA contains a single open reading frame of 933 nucleotides encoding 310 amino acids. Several features identified the predicted ZmPUMP protein as a member of the mitochondrial UCP subfamily of mitochondrial carriers. Expression studies demonstrated that ZmPUMP is ubiquitously expressed in maize tissues and its transcript level is not altered in early stages of embryo germination. In contrast to known UCP genes, ZmPUMP is not responsive to cold stress. Instead its expression is increased in response to H 2O 2- or menadione-induced oxidative stress. © 2003 Elsevier Science Ireland Ltd. All rights reserved.
Resumo:
The phylogenetic relationships of the order Pleuronectiformes are controversial and at some crucial points remain unresolved. To date most phylogenetic studies on this order have been based on morpho-anatomical criteria, whereas only a few sequence comparisons based studies have been reported. In the present study, the phylogenetic relationships of 30 flatfish species pertaining to seven different families were examined by sequence analysis of the first half of the 16S mitochondrial DNA gene. The results obtained did not support percoids as the sister group of pleuronectiforms. The monophyletic origin of most families analyzed, Soleidae, Scophthalmidae, Achiridae, Pleuronectidae and Bothidae, was strongly supported, except for Paralichthyidae which was clearly subdivided into two groups, one of them associated with high confidence to Pleuronectidae. The analysis of the 16S rRNA gene also suggested the monophyly of Pleuronectiforms as the most probable hypothesis and consistently supported some major interfamily groupings.
Resumo:
In most strains of Saccharomyces cerevisiae the mitochondrial gene COX1, for subunit 1 of cytochrome oxidase, contains multiple exons and introns. Processing of COX1 primary transcript requires accessory proteins factors, some of which are encoded by nuclear genes and others by reading frames residing in some of the introns of the COX1 and COB genes. Here we show that the low molecular weight protein product of open reading frame YLR204W, for which we propose the name COX24, is also involved in processing of COX1 RNA intermediates. The growth defect of cox24 mutants is partially rescued in strains harboring mitochondrial DNA lacking introns. Northern blot analyses of mitochondrial transcripts indicate cox24 null mutants to be blocked in processing of introns aI2 and aI3. The dependence of intron aI3 excision on Cox24p is also supported by the growth properties of the cox24 mutant harboring mitochondrial DNA with different intron compositions. The intermediate phenotype of the cox24 mutant in the background of intronless mitochondrial DNA, however, suggests that in addition to its role in splicing of the COX1 pre-mRNA, Cox24p still has another function. Based on the analysis of a cox14-cox24 double mutant, we propose that the other function of Cox24p is related to translation of the COX1 mRNA. © 2006 by The American Society for Biochemistry and Molecular Biology, Inc.
Resumo:
The simultaneous existence of alternative oxidases and uncoupling proteins in plants has raised the question as to why plants need two energy-dissipating systems with apparently similar physiological functions. A probably complete plant uncoupling protein gene family is described and the expression profiles of this family compared with the multigene family of alternative oxidases in Arabidopsis thaliana and sugarcane (Saccharum sp.) employed as dicot and monocot models, respectively. In total, six uncoupling protein genes, AtPUMP1-6, were recognized within the Arabidopsis genome and five (SsPUMP1-5) in a sugarcane EST database. The recombinant AtPUMP5 protein displayed similar biochemical properties as AtPUMP1. Sugarcane possessed four Arabidopsis AOx1-type orthologues (SsAOx1a-1d); no sugarcane orthologue corresponding to Arabidopsis AOx2-type genes was identified. Phylogenetic and expression analyses suggested that AtAOx1d does not belong to the AOx1-type family but forms a new (AOx3-type) family. Tissue-enriched expression profiling revealed that uncoupling protein genes were expressed more ubiquitously than the alternative oxidase genes. Distinct expression patterns among gene family members were observed between monocots and dicots and during chilling stress. These findings suggest that the members of each energy-dissipating system are subject to different cell or tissue/organ transcriptional regulation. As a result, plants may respond more flexibly to adverse biotic and abiotic conditions, in which oxidative stress is involved. © The Author [2006]. Published by Oxford University Press [on behalf of the Society for Experimental Biology]. All rights reserved.
Resumo:
Uncoupling proteins (UCPs) are specialized mitochondrial transporter proteins that uncouple respiration from ATP synthesis. In this study, cDNA encoding maize uncoupling protein (ZmPUMP) was expressed in Escherichia coli and recombinant ZmPUMP reconstituted in liposomes. ZmPUMP activity was associated with a linoleic acid (LA)-mediated H+ efflux with Km of 56.36 ± 0.27 μM and Vmax of 66.9 μmol H+ min-1 (mg prot)-1. LA-mediated H+ fluxes were sensitive to ATP inhibition with Ki of 2.61 ± 0.36 mM (at pH 7.2), a value similar to those for dicot UCPs. ZmPUMP was also used to investigate the importance of a histidine pair present in the second matrix loop of mammalian UCP1 and absent in plant UCPs. ZmPUMP with introduced His pair (Lys155His and Ala157His) displayed a 1.55-fold increase in LA-affinity while its activity remained unchanged. Our data indicate conserved properties of plant UCPs and suggest an enhancing but not essential role of the histidine pair in proton transport mechanism. © 2006 Elsevier Inc. All rights reserved.