55 resultados para minimal ontological overlap
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
In this paper some aspects on chaotic behavior and minimality in planar piecewise smooth vector fields theory are treated. The occurrence of non-deterministic chaos is observed and the concept of orientable minimality is introduced. Some relations between minimality and orientable minimality are also investigated and the existence of new kinds of non-trivial minimal sets in chaotic systems is observed. The approach is geometrical and involves the ordinary techniques of non-smooth systems.
Resumo:
Electric power distribution systems, and particularly those with overhead circuits, operate radially but as the topology of the systems is meshed, therefore a set of circuits needs to be disconnected. In this context the problem of optimal reconfiguration of a distribution system is formulated with the goal of finding a radial topology for the operation of the system. This paper utilizes experimental tests and preliminary theoretical analysis to show that radial topology is one of the worst topologies to use if the goal is to minimize power losses in a power distribution system. For this reason, it is important to initiate a theoretical and practical discussion on whether it is worthwhile to operate a distribution system in a radial form. This topic is becoming increasingly important within the modern operation of electrical systems, which requires them to operate as efficiently as possible, utilizing all available resources to improve and optimize the operation of electric power systems. Experimental tests demonstrate the importance of this issue. (C) 2014 Elsevier Ltd. All rights reserved.
Resumo:
For large values of the minimal supergravity model parameter tan beta, the tau lepton and the bottom quark Yukawa couplings become large, leading to reduced masses of tau sleptons and b squarks relative to their first and second generation counterparts, and to enhanced decays of charginos and neutralinos to tau leptons and b quarks. We evaluate the reach of the CERN Large Hadron Collider (LHC) pp collider for supersymmetry in the MSUGRA model parameter space. We find that values of m((g) over tilde) similar to 1500-2000 GeV can be probed with just 10 fb(-1) of integrated luminosity for tan beta values as high as 45, so that MSUGRA cannot escape the scrutiny of LHC experiments by virtue of having a large value of tan beta. We also perform a case study of an MSUGRA model at tan beta = 45 where (Z) over tilde(2)-->tau<(tau)over tilde>(1) and (W) over tilde(1)-->tau(1)nu(tau) with similar to 100% branching fraction. In this case, at least within our simplistic study, we show that a di-tau mass edge, which determines the value of m((Z) over tilde 2) - m((Z) over tilde 1), can still be reconstructed. This information can be used as a starting point for reconstructing SUSY cascade decays on an event-by-event basis, and can provide a strong constraint in determining the underlying model parameters. Finally, we show that for large tan beta, there can be an observable excess of tau leptons, and argue that tau signals might serve to provide new information about the underlying model framework. [S0556-2821(99)04205-8].
Resumo:
Shoulder arthroscopic surgeries evolve with intense postoperative pain. Several analgesic techniques have been advocated. The aim of this study was to compare suprascapular and axillary nerve blocks in shoulder arthroscopy using the interscalene approach to brachial plexus blockade. According to the technique used, sixty-eight patients were allocated into two groups: interscalene group (IG, n=34) and selective group (SG, n=34), with neurostimulation approach used for both techniques. After appropriate motor response, IG received 30 mL of 0.33% levobupivacaine in 50% enantiomeric excess with adrenalin 1:200,000. After motor response of suprascapular and axillary nerves, SG received 15 mL of the same substance on each nerve. General anesthesia was then administered. Variables assessed were time to perform the blocks, analgesia, opioid consumption, motor block, cardiovascular stability, patient satisfaction and acceptability. Time for interscalene blockade was significantly shorter than for selective blockade. Analgesia was significantly higher in the immediate postoperative period in IG and in the late postoperative period in SG. Morphine consumption was significantly higher in the first hour in SG. Motor block was significantly lower in SG. There was no difference between groups regarding cardiocirculatory stability and patient satisfaction and acceptability. Failure occurred in IG (1) and SG (2). Both techniques are safe, effective, and with the same degree of satisfaction and acceptability. The selective blockade of both nerves showed satisfactory analgesia, with the advantage of providing motor block restricted to the shoulder.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
This paper deals with a system that describes an electrical circuitcomposed by a linear system coupled to a nonlinear one involving a tunneldiode in a flush-and-fill circuit. One of the most comprehensive models for thiskind of circuits was introduced by R. Fitzhugh in 1961, when taking on carebiological tasks. The equation has in its phase plane only two periodic solutions,namely, the unstable singular point S0 and the stable cycle Γ. If the system isat rest on S0, the natural flow of orbits seeks to switch-on the process by going- as time goes by - toward its steady-state, Γ. By using suitable controls it ispossible to reverse such natural tendency going in a minimal time from Γ toS0, switching-off in this way the system. To achieve this goal it is mandatorya minimal enough strength on controls. These facts will be shown by means ofconsiderations on the null control sets in the process.
Resumo:
Several machining processes have been created and improved in order to achieve the best results ever accomplished in hard and difficult to machine materials. Some of these abrasive manufacturing processes emerging on the science frontier can be defined as ultra-precision grinding. For finishing flat surfaces, researchers have been putting together the main advantages of traditional abrasive processes such as face grinding with constant pressure, fixed abrasives for two-body removal mechanism, total contact of the part with the tool, and lapping kinematics as well as some specific operations to keep grinding wheel sharpness and form. In the present work, both U d-lap grinding process and its machine tool were studied aiming nanometric finishing on flat metallic surfaces. Such hypothesis was investigated on AISI 420 stainless steel workpieces U d-lap ground with different values of overlap factor on dressing (Ud=1, 3, and 5) and grit sizes of conventional grinding wheels (silicon carbide (SiC)=#800, #600, and #300) applying a new machine tool especially designed and built for such finishing. The best results, obtained after 10 min of machining, were average surface roughness (Ra) of 1.92 nm, 1.19-μm flatness deviation of 25.4-mm-diameter workpieces, and mirrored surface finishing. Given the surface quality achieved, the U d-lap grinding process can be included among the ultra-precision abrasive processes and, depending on the application, the chaining steps of grinding, lapping, and polishing can be replaced by the proposed abrasive process.