165 resultados para milling


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Na região tritícola sul-brasileira predominam invernos com temperatura baixa (mínima absoluta, em dias com geada, de até - 8,0ºC). No entanto, a incidência de elevada temperatura (máxima absoluta, em dias isolados entre outubro e novembro, de até 41,0ºC) pode ser encontrada durante todo o período de enchimento de grãos e na maturação fisiológica. Este trabalho teve por objetivos verificar a influência das temperaturas mínima e máxima na qualidade industrial e no rendimento de grãos. Foram usados dados de experimentos com trigo Empresa Brasileira de Pesquisa Agropecuária (EMBRAPA) 16, conduzidos nos anos de 1990 a 1998, em sete locais do Rio Grande do Sul e em quatro locais de Santa Catarina. A análise estatística realizada foi correlações múltiplas. Verificou-se que, nos diferentes períodos analisados: a) o aumento da temperatura máxima média resultou em acréscimo do peso de mil grãos, do rendimento de grãos, da força geral de glúten, da microssedimentação com dodecil sulfato de sódio e do número de queda: b) o peso do hectolitro (exceção feita ao período final de maturação fisiológica), o peso de mil grãos, o número de queda e a extração experimental de farinha foram influenciados negativamente pela temperatura mínima média; c) a temperatura mínima média influenciou positivamente a força geral de glúten, a relação P/L e a microssedimentação com dodecil sulfato de sódio.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Na região de Rio Claro (SP), localiza-se o Pólo Cerâmico de Santa Gertrudes, responsável por cerca de 50% da produção nacional de revestimentos. Durante o beneficiamento da argila e preparação da massa, cerca de 2 a 3% argila fina é colocada em suspensão no ar, sendo quase toda retida nos filtros de manga. Esse material fino, por problemas de homogeneização ou tecnológico, representa perda de material e se constitui em um potencial agente de contaminação do ar e da água, necessitando ser armazenado. A presente pesquisa buscou viabilizar o aproveitamento do pó retido nos filtros, no próprio processo, através da granulação da massa por aspersão de barbotina preparada com o pó. Investigaram-se a composição ideal da barbotina e a influência dessa metodologia no produto final, comparando a massa granulada por aspersão com a massa-padrão.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

MgB2 samples were prepared using as-supplied commercial 96% boron with strong crystalline phase and the same 96% boron (B) after ball milling. The effects of the properties of the starting B powder on the superconductivity were evaluated. We observed that samples using ball-milled 96% B, in comparison with the one made from the as-supplied 96% B, were character- ized by small grain size, broadened full width at half maximum (FWHM), and enhanced magnetic critical current density (J(c)). J(c) reached 2 x 10(3) Acm(-2) at 5 K and 8 T. The improved pinning of these samples seems to be caused by enhanced grain boundary pinning at high field.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Bismuth titanatc-Bi(4)Ti(3)O(12) (BIT) with wide application in the electronic industry as capacitors, memory devices and sensors is the simplest compound in the Aurivillius family, which consists of (Bi(2)O(2))(2+) sheets alternating with (Bi(2)T(i)3O(10))(2-) perovskite-like layers. The synthesis of more resistive BIT ceramics would be preferable advance in obtaining of well-densified ceramic with small grains randomly oriented to limit the conductivity along the (Bi(2)O(2))(2+) layers. Having in mind that the conventional ceramic route for the synthesis can lead to non-stoichiometry in composition, in consequence of the undesirable loss in bismuth content through volatilization of Bi(2)O(3) at elevated temperature, our efforts were addressed to preparation of BIT by mechanical activation the constituent oxides. The nucleation and phase formation of BIT, crystal structure, microstructure, powder particle size and specific surface area were followed by XRD, Rietveld refinement analysis, thermal analysis, scanning electron microscopy (SEM) and the BET specific surface area measurements. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Our efforts were directed to the preparation of bismuth titanate-Bi4Ti3O12 (BIT) by two procedures: mechanically assisted synthesis and polymeric precursor method to display a variety of their advantages. To follow the nucleation and phase formation of BIT, XRD and Rietveld refinement analysis were used and it was shown that Bi4Ti3O12 ceramic can been successfully prepared from nano-sized powders obtained by both methods. The ferroelectric properties were determined and the loops from BIT obtained by polymeric precursor method were not fully saturated with a remnant polarization of 20 mu C/cm(2) and coercitive field of 1500 kV/cm. BIT obtained from powders prepared by mechanically assisted synthesis shows a remnant polarization of 0.65 mu C/cm(2) and coercitive field of 1050 kV/cm. The grain morphology may be the factor causing the observed differences. (C) 2005 Published by Elsevier Ltd and Techna Group S.r.l.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Two ways of application of intensive milling in ZnO varistors processing were compared. First was intensive milling of mixture of previously prepared constituent phases. In this case, intensive milling was applied only to obtain highly activated nanocrystalline varistor powder mixtures. Second application is intensive milling of simple mixture of oxides that could result not only in activation and formation of nanocrystal line powders, but also in mechanochernical reaction and synthesis of constituent phases. Powders and ceramics samples were characterized by XRD and SEM analysis. as well as by de electrical measurements (nonlinearity coefficients, leakage current and breakdown field). Differences in microstructural and electrical properties of obtained varistors were discussed and optimal milling and processing conditions were recommended. The best electrical characteristics were found in sample ZI -DMCP-m, which exhibited leakage current of 2.5 mu A/cm(2), nonlinear coefficient reaching 58 and breakdown field of 8950 V/cm. (c) 2007 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The mechanical activation is one of the most effective method for obtaining highly disperse system due to mechanical action stress fields form in solids during milling procedure. This effect results in changes of free energy, leading to release of heat, formation of a new surface, formation of different crystal lattice defects and initiation of solid-state chemical reaction. The accumulated deformation energy determines irreversible changes of crystal structure and consequently microstructure resulting in the change of their properties. Mechanochemical processing route has been developed recently for the production of intermetallic and alloy compounds. The intrinsic advantage of this process is that the solid-state reaction is activated due to mechanical energy instead of the temperature. It was shown that the chemical reactivity of starting materials could be improved significantly after mechanochemical activation and, subsequently, the calcination temperature was reduced. Besides, it was apparent that the mechanochemical treatment could enhance the reactivity of constituent oxides; however, the sintering process could not be avoided to develop the desired ceramics. A novel mechanochemical technique for synthesis of fine-grained perovskite structured powders has shown that it is possible to form perovskite at room temperature. The effect of milling on the formation of perovskite structure of barium titanate (BT), lead titanate (PT), PZT, PZN, magnesium niobate (PMN) and LM ceramic materials was analyzed. The dielectric properties of sintered ceramics are comparable with those prepared by other methods in the literature. (C) 2003 Elsevier B.V. B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Purpose: the aim of this study was to evaluate bone regeneration in bone cavities filled with particulate autogenous bone either harvest in blocks and subjected to milling procedures or collected during osteotomy with implant burs. Materials and Methods: In 12 rabbits, 3 noncritical unicortical cavities 7 mm in diameter were prepared with a trephine drill on the right tibia. The cavities were filled respectively with particulate autogenous bone achieved with a manual bone crusher ( particulate group), with particulate autogenous bone obtained using bone collector during osteotomy ( collected group), and with blood clot ( control group). Animals were sacrificed at 7, 15, and 30 days after surgery ( 4 animals for each time period). The sections were examined by histologic and histomorphometric analysis. Results: At 7 days, the samples were filled by coagulum, and bone particles were observed only in the collected (24%) and particulate groups (44.75%). At 15 days, there was connective differentiation in all groups, with presence of grafted bone particles and onset of newly formed bone in the collected (38.88%) and particulate groups (46.0%). At 30 days, there was bone fill ( immature trabecular bone) of the cavities in the control (50%), collected (64.63%) and particulate groups (66%). Conclusion: No significant difference was demonstrated between noncritical unicortical bone defects in rabbit tibiae filled with particulate bone harvested as a block and subjected to milling and those filled with bone collected during osteotomy with implant drills when the defects were observed up to 30 days following their creation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The polymeric precursor method was used to synthesize lead zirconate titanate powder (PZT). The crystalline powder was then amorphized by a high-energy ball milling process during 120h. A strong photoluminescence emission was observed at room temperature for the amorphized PZT powder. The powders were characterized by XRD and the percentage of amorphous phase was calculated through Rietveld refinement. The microstructure for both phases was investigated by TEM. The optical gap was calculated through the Wood and Tauc method using the UV-Vis. data. Quantum mechanical calculations were carried out to give an interpretation of the photoluminescence in terms of electronic structure. (C) 2004 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

PZT ceramics were obtained from the mechanochemically synthesized powders. Milling and sintering conditions were optimized based on results of density measurements, as well as on microstructural and electrical characterization. As a result, highly dense and homogeneous ceramics were obtained. Excellent microstructural properties resulted in good electrical properties. Samples showed values of dielectric constants reaching 12800 at the Curie temperature, as well as low dielectric loss under the optimal processing conditions. High values of remanent polarization, reaching 60 muC cm(-2), indicate high internal polarizability. (C) 2003 Kluwer Academic Publishers.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Mechanochemical synthesis was applied to obtain nanocrystalline powders of composition Pb(Zr0.52Ti0.48)O-3 (PZT). Milling was performed in a planetary ball mill using vials and balls made of zirconia or steel-in order to investigate influence of milling media on the electrical properties of resulting ceramics. PZT ceramics showed high values for dielectric constant (epsilon(r)), reaching 970 at room temperature, as well as low dielectric loss (tandelta) under the optimal processing conditions. High values of remanent polarization (P-r) indicate high internal polarizability. The best samples showed piezoelectric strain constant d(33) = 347 pC/N and planar coupling factor k(P) = 0.44. Milling in ZrO2 medium prevents powder contamination and provides reproducibility of milling process. Also, PZT obtained from the powders milled in ZrO2 exhibited lower values of dielectric loss, in comparison with the PTZ obtained from the powders milled in Fe. This suggests that contamination of the powder with Fe could result in an increase of conductivity in final product. (C) 2004 Kluwer Academic Publishers.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Mechanical alloying has been used successfully to produce nanocrystalline powders of hydroxyapatite (HA) using three different procedures. The milled HA was studied by X-ray diffraction, Infrared, Raman scattering spectroscopy and Scanning Electron Microscopy (SEM). We obtained HA with different degrees of crystallinity and time of milling. The grain size analysis through SEM and XRD shows particles with dimensions of 36.9, 14.3 and 35.5 nm (for (R1), (R2) and (R3), respectively) forming bigger units with dimensions given by 117.2, 110.8 and 154.4 nm (for (R1), (R2) and (R3), respectively). The Energy-Dispersive Spectroscopy (EDS) analysis showed that an atomic ratio of Ca/P= 1.67, 1.83 and 1.50 for reactions (R1), (R2) and (R3), respectively. These results suggest that the R1 nanocrystalline ceramic is closer to the expected value for the ratio Ca/P for hydroxyapatite, which is 513 congruent to 1.67. The bioactivity analysis shows that all the samples implanted into the rabbits can be considered biocompatible, since they had been considered not toxic, bad not caused inflammation and reject on the part of the organisms of the animals, during the period of implantation. The samples implanted in rabbits had presented new osseous tissue formation with the presence of osteoblasts cells. (C) 2004 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A powder mixture of BaO and TiO2, was mechanochemically treated in a planetary ball mill in an air atmosphere for up to 4 h, using zirconium oxide vial and zirconium oxide balls as the milling medium. Mechanochemical reaction leads to the gradual formation of BaTiO3 phase. Phase evolution during synthesis and changes in powder size and morphology were monitored by XRD, DSC, IR and TEM analysis and it was shown that the formation of BaTiO3 phase was initiated after 60 min. Extended time of milling directed to formation of higher amount of BaTiO3 perovskite phase. Barium titanate with good crystallinity was formed after 240 min sintering without pre-calcination step was performed at 1330 degrees C for 2 It within heating rate 10 degrees C/min. (c) 2005 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

PZT ceramic powders were successfully prepared from the mixture of PbO, ZrO2 and TiO2 by mechanochemical synthesis in a planetary ball mill, under different milling conditions. Phase evolution during synthesis was monitored by X-ray diffraction analysis. Intensive milling resulted in formation of the nanocrystalline, perovskite PZT powders after 1 h of milling. This is a significant improvement in comparison to milling conditions reported by other authors. Depending on milling parameters the presence of some other phases, such as unreacted ZrO2, was also detected in some samples. The changes in powder size and morphology due to intensive milling, were determined by SEM and TEM, while BET analysis was used to determine specific surface area of the powders. Conclusions about processes taking place during mechanochemical synthesis of PZT powders were made based on the results of characterization. (C) 2002 Elsevier B.V. B.V. All rights reserved.