50 resultados para maximal ontological completeness
Resumo:
The aim of this study was to establish the validity of the anaerobic threshold (AT) determined on the soccer-specific Hoff circuit (AT(Hoff)) to predict the maximal lactate steady-state exercise intensity (MLSSHoff) with the ball. Sixteen soccer players (age: 16.0 +/- 0.5 years; body mass: 63.7 +/- 9.0 kg; and height: 169.4 +/- 5.3 cm) were submitted to 5 progressive efforts (7.0-11.0 km.h(-1)) with ball dribbling. Thereafter, 11 players were submitted to 3 efforts of 30 minutes at 100, 105, and 110% of AT(Hoff). The AT(Hoff) corresponded to the speed relative to 3.5 mmol.L-1 lactate concentration. The speed relative to 4.0 mmol.L-1 was assumed to be AT(Hoff4.0), and the AT(HoffBI) was determined through bisegmented adjustment. For comparisons, Student's t-test, intraclass correlation coefficient (ICC), and Bland and Altman analyses were used. For reproducibility, ICC, typical error, and coefficient of variation were used. No significant difference was found between AT test and retest determined using different methods. A positive correlation was observed between AT(Hoff) and AT(Hoff4.0). The MLSSHoff (10.6 +/- 1.3 km.h(-1)) was significantly different compared with AT(Hoff) (10.2 +/- 1.2 km.h(-1)) and AT(HoffBI) (9.5 +/- 0.4 km.h(-1)) but did not show any difference from LAn(Hoff4.0) (10.7 +/- 1.4 km.h(-1)). The MLSSHoff presented high ICCs with AT(Hoff) and AT(Hoff4.0) (ICC = 0.94; and ICC = 0.89; p <= 0.05, respectively), without significant correlation with AT(HoffBI). The results suggest that AT determined on the Hoff circuit is reproducible and capable of predicting MLSS. The AT(Hoff4.0) was the method that presented a better approximation to MLSS. Therefore, it is possible to assess submaximal physiological variables through a specific circuit performed with the ball in young soccer players.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
The aim of this study was to investigate whether the maximal power output (Pmax) during an incremental test was dependent on the curvature constant (W') of the power-time relationship. Thirty healthy male subjects (maximal oxygen uptake = 3.58 ± 0.40 L·min(-1)) performed a ramp incremental cycling test to determine the maximal oxygen uptake and Pmax, and 4 constant work rate tests to exhaustion to estimate 2 parameters from the modeling of the power-time relationship (i.e., critical power (CP) and W'). Afterwards, the participants were ranked according to their magnitude of W'. The median third was excluded to form a high W' group (HIGH, n = 10), and a low W' group (LOW, n = 10). Maximal oxygen uptake (3.84 ± 0.50 vs. 3.49 ± 0.37 L·min(-1)) and CP (213 ± 22 vs. 200 ± 29 W) were not significantly different between HIGH and LOW, respectively. However, Pmax was significantly greater for the HIGH (337 ± 23 W) than for the LOW (299 ± 40 W). Thus, in physically active individuals with similar aerobic parameters, W' influences the Pmax during incremental testing.
Resumo:
In this paper I discuss Husserl's solution of the problem of imaginary elements in mathematics as presented in the drafts for two lectures he gave in Göttingen in 1901 and other related texts of the same period, a problem that had occupied Husserl since the beginning of 1890, when he was planning a never published sequel to Philosophie der Arithmetik (1891). In order to solve the problem of imaginary entities Husserl introduced, independently of Hilbert, two notions of completeness (definiteness in Husserl's terminology) for a formal axiomatic system. I present and discuss these notions here, establishing also parallels between Husserl's and Hilbert's notions of completeness. © 2000 Kluwer Academic Publishers.