182 resultados para inferência bayesiana
Resumo:
Pós-graduação em Zootecnia - FCAV
Resumo:
Pós-graduação em Genética e Melhoramento Animal - FCAV
Resumo:
Pós-graduação em Genética e Melhoramento Animal - FCAV
Resumo:
The aim of this study was to assess the occurrence of genotype-environment interaction, as well as its effects on the magnitude of genetic parameters and the classification of Nellore breeding bulls for the trait adjusted weight at 205 days (W205) on Southern Brazil. The components of (co)variance were estimated by Bayesian inference, using a linear-linear animal model in a bi-trait analysis. The proposed model for the analyses considers as random the direct additive genetic and maternal effects and residual effects, and as fixed effects the contemporary groups, sex, season of birth and weighing, and calving age as covariable (linear and quadratic effects). The a posteriori mean estimates of the direct heritabilities for W205 in the three States varied from 0.24 in Paraná (PR) to 0.34 in Santa Catarina (SC). The estimates of maternal heritability varied from 0.23 in SC and Rio Grande do Sul (RS) to 0.28 in PR. The a posteriori mean distributions of the genetic correlation varied from 0.52 between SC and RS, to 0.84 between PR and RS, suggesting that the best breeding bulls in SC are not the same as in RS.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Matematica Aplicada e Computacional - FCT
Resumo:
Estimaram-se as correlações genéticas entre os escores visuais e as características reprodutivas, utilizando a estatística bayesiana sob modelo animal linear-limiar, em bovinos da raça Nelore. Foram estudadas características categóricas morfológicas, avaliadas visualmente aos oito, 15 e 22 meses de idade; e características contínuas de perímetro escrotal padronizado aos 365 e 450 dias de idade, além da idade ao primeiro parto. As estimativas de correlações genéticas foram de sentido favorável à seleção, apresentando magnitudes moderadas, sugerindo que a seleção de animais para um biótipo desejável pode levar a animais com maior fertilidade e precocidade sexual. As estimativas de correlação genética para o perímetro escrotal padronizado aos 450 dias e a idade ao primeiro parto com as características morfológicas avaliadas aos 22 meses de idade foram maiores do que as obtidas entre as características de escores visuais avaliadas aos oito e 15 meses de idade. A utilização de escores visuais como critério de seleção trará progresso genético também para as características reprodutivas.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
This study aimed to: a) to compare the covariance components obtained by Restricted Maximum Likelihood (REML) and by bayesian inference (BI): b) to run genetic evaluations for weights of Canchim cattle measured at weaning (W240) and at eighteen months of age (W550), adjusted or not to 240 and 550 days of age, respectively, using the mixed model methodology with covariance components obtained by REML or by BI; and c) to compare selection decisions from genetic evaluations using observed or adjusted weights and by REML or BI. Covariance components, heritabilities and genetic correlation for W240 and W550 were estimated and the predicted breeding values were used to select 10% and 50% of the best bulls and cows, respectively. The covariance components obtained by REML were smaller than the a posteriori means obtained by Bl. Selected animals from both procedures were not the same, probably because the covariance components and genetic parameters were different. The inclusion of age of animal at weighing as a covariate in the statistical model fitted by BI did not change the selected bulls and cows.
Resumo:
In this paper is presented a region-based methodology for Digital Elevation Model segmentation obtained from laser scanning data. The methodology is based on two sequential techniques, i.e., a recursive splitting technique using the quad tree structure followed by a region merging technique using the Markov Random Field model. The recursive splitting technique starts splitting the Digital Elevation Model into homogeneous regions. However, due to slight height differences in the Digital Elevation Model, region fragmentation can be relatively high. In order to minimize the fragmentation, a region merging technique based on the Markov Random Field model is applied to the previously segmented data. The resulting regions are firstly structured by using the so-called Region Adjacency Graph. Each node of the Region Adjacency Graph represents a region of the Digital Elevation Model segmented and two nodes have connectivity between them if corresponding regions share a common boundary. Next it is assumed that the random variable related to each node, follows the Markov Random Field model. This hypothesis allows the derivation of the posteriori probability distribution function whose solution is obtained by the Maximum a Posteriori estimation. Regions presenting high probability of similarity are merged. Experiments carried out with laser scanning data showed that the methodology allows to separate the objects in the Digital Elevation Model with a low amount of fragmentation.
Resumo:
Current research compares the Bayesian estimates obtained for the parameters of processes of ARCH family with normal and Student's t distributions for the conditional distribution of the return series. A non-informative prior distribution was adopted and a reparameterization of models under analysis was taken into account to map parameters' space into real space. The procedure adopts a normal prior distribution for the transformed parameters. The posterior summaries were obtained by Monte Carlo Markov Chain (MCMC) simulation methods. The methodology was evaluated by a series of Bovespa Index returns and the predictive ordinate criterion was employed to select the best adjustment model to the data. Results show that, as a rule, the proposed Bayesian approach provides satisfactory estimates and that the GARCH process with Student's t distribution adjusted better to the data.