66 resultados para heavy ion HIRFL
Resumo:
We derive simple and physically transparent expressions for the contribution of the strong interaction to one-nucleon-removal processes in peripheral relativistic heavy-ion collisions. The coherent contribution, i.e., the excitation of a giant dipole resonance via meson exchange, is shown to be negligible as well as the interference between Coulomb and nuclear excitation. The incoherent nucleon-knockout contribution is also derived suggesting the nature of the nuclear interaction in this class of processes. We also justify the simple formulae used to fit the data of the E814 Collaboration. © 1995 Elseier Science B.V. All rights reserved.
Resumo:
The usual particle emission scenario used in hydrodynamics presupposes that particles instantaneously stop interacting (freeze-out) once they reach some three dimensional surface. Another formalism has been developed recently where particle emission occurs continuously during the whole expansion of thermalized matter. Here we compare both mechanisms in a simplified hydrodynamical framework and show that they lead to a drastically different interpretation of data.
Resumo:
The effect of the continuous emission hypothesis on the two-pion Bose-Einstein correlation function is discussed and compared with the corresponding results based on the usual freeze-out. Sizable differences in the correlation function appear in these different descriptions of the decoupling process. This means that, when extracting properties of the hot matter formed in high-energy heavy-ion collisions from the data, completely different conclusions may be reached according to the description of the particle emission process adopted.
Resumo:
We use an improved Langevin description that incorporates both additive and multiplicative noise terms to study the dynamics of phase ordering. We perform real-time lattice simulations to investigate the role played by different contributions to the dissipation and noise. Lattice-size independence is assured by the use of appropriate lattice counterterms. © 2006 American Institute of Physics.
Resumo:
The charged particle transverse momentum (pT) spectra are presented for pp collisions at √s = 0:9 and 7TeV. The data samples were collected with the CMS detector at the LHC and correspond to integrated luminosities of 231 μb-1 and 2.96 pb-1, respectively. Calorimeter-based high-transverse-energy triggers are employed to enhance the statistical reach of the high-pT measurements. The results are compared with leading and next-toleading order QCD and with an empirical scaling of measurements at different collision energies using the scaling variable xT - 2pT=ps over the pT range up to 136 GeV/c. Using a combination of xT scaling and direct interpolation at fixed pT, a reference transverse momentum spectrum at √s = 2:76TeV is constructed, which can be used for studying high-pT particle suppression in the dense QCD medium produced in heavy-ion collisions at that centre-of-mass energy. Copyright CERN.
Resumo:
In high energy heavy ion collisions a hot and dense medium is formed, where the hadronic masses may be shifted from their asymptotic values. If this mass modification occurs, squeezed back-to-back correlations (BBC) of particle-antiparticle pairs are predicted to appear, both in the femionic (fBBC) and in the bosonic (bBBC) sectors. Although they have unlimited intensity even for finite-size expanding systems, these hadronic squeezed correlations are very sensitive to their time emission distribution. Here we discuss results in case this time emission is parameterized by a Lévy-type distribution, showing that it reduces the signal even more dramatically than a Lorentzian distribution, which already reduces the intensity of the effect by orders of magnitude, as compared to the sudden emission. However, we show that the signal could still survive if the duration of the process is short, and if the effect is searched for lighter mesons, such as kaons. We compare some of our results to recent PHENIX preliminary data on squeezed correlations of K +K - pairs. © 2011 Pleiades Publishing, Ltd.
Resumo:
Results from the first study of isolated-photon+jet correlations in relativistic heavy ion collisions are reported. The analysis uses data from PbPb collisions at a centre-of-mass energy of 2.76TeV per nucleon pair corresponding to an integrated luminosity of 150μb-1 recorded by the CMS experiment at the LHC. For events containing an isolated photon with transverse momentum pTγ>60GeV/c and an associated jet with pTJet>30GeV/c, the photon+jet pT imbalance is studied as a function of collision centrality and compared to pp data and pythia calculations at the same collision energy. Using the pTγ of the isolated photon as an estimate of the momentum of the associated parton at production, this measurement allows an unbiased characterisation of the in-medium parton energy loss. For more central PbPb collisions, a significant decrease in the ratio pTJet/pTγ relative to that in the pythia reference is observed. Furthermore, significantly more pTγ>60GeV/c photons in PbPb are observed not to have an associated pTJet>30GeV/c jet, compared to the reference. However, no significant broadening of the photon+jet azimuthal correlation is observed. © 2012 CERN.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Recalibration of U-doped standard glasses through uranium thin film for neutron-fluence measurements
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)