195 resultados para discrete element method
Resumo:
Many new viscoelastic materials have been developed recently to help improve noise and vibration levels in mechanical structures for applications in automobile and aeronautical industry. The viscoelastic layer treatment applied to solid metal structures modifies two main properties which are related to the mass distribution and the damping mechanism. The other property controlling the dynamics of a mechanical system is the stiffness that does not change much with the viscoelastic material. The model of such system is usually complex, because the viscoelastic material can exhibit nonlinear behavior, in contrast with the many available tools for linear dynamics. In this work, the dynamic behavior of sandwich beam is modeled by finite element method using different element types which are then compared with experimental results developed in the laboratory for various beams with different viscoelastic layer materials. The finite element model is them updated to help understand the effects in the damping for various natural frequencies and the trade-off between attenuation and the mass add to the structure.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
This work presents a boundary element formulation for the analysis of building floor slabs, without beams, in which columns are coupled with the plate. An alternative formulation of boundary element method is presented, which considers three nodal displacements values (w, partial derivativew/partial derivativen and partial derivativew/partial derivatives) for the nodes at the boundary of the plate. In this formulation three boundary equations are written for all nodes at the boundary and in the domain of the plate. As the nodes of the column-plate connections are also represented by three nodal values, all these structural elements can be easily coupled. It is supposed that the cross-sections of the columns remain flat after the deflection and consequently the assumption of linear variation of the stress in the plate-column contact surface is also valid. (C) 2003 Elsevier B.V. Ltd. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Presents the dynamic modelling of a flexible robotic manipulator with two flexible links and two revolute joints, which rotates in the horizontal plane. The dynamic equations are derived using the Newton-Euler formulation and the finite element method, based on elementary beam theory, which is used to discretize the displacements such that the small motion is represented in terms of nodal displacements. Computer simulation results are presented to illustrate this study. The dynamic model becomes necessary for use in future design and control applications.
Resumo:
In this work, are discussed two formulations of the boundary element method - BEM to perform linear bending analysis of plates reinforced by beams. Both formulations are based on the Kirchhoffs hypothesis and they are obtained from the reciprocity theorem applied to zoned plates, where each sub-region defines a beam or a stab. In the first model the problem values are defined along the interfaces and the external boundary. Then, in order to reduce the number of degrees of freedom kinematics hypothesis are assumed along the beam cross section, leading to a second formulation where the collocation points are defined along the beam skeleton, instead of being placed on interfaces. on these formulations no approximation of the generalized forces along the interface is required. Moreover, compatibility and equilibrium conditions along the interface are automatically imposed by the integral equation. Thus, these formulations require less approximation and the total number of the degrees of freedom is reduced. In the numerical examples are discussed the differences between these two BEM formulations, comparing as well the results to a well-known finite element code.
Resumo:
In this work, the plate bending formulation of the boundary element method - BEM, based on the Reissner's hypothesis, is extended to the analysis of plates reinforced by beams taking into account the membrane effects. The formulation is derived by assuming a zoned body where each sub-region defines a beam or a slab and all of them are represented by a chosen reference surface. Equilibrium and compatibility conditions are automatically imposed by the integral equations, which treat this composed structure as a single body. In order to reduce the number of degrees of freedom, the problem values defined on the interfaces are written in terms of their values on the beam axis. Initially are derived separated equations for the bending and stretching problems, but in the final system of equations the two problems are coupled and can not be treated separately. Finally are presented some numerical examples whose analytical results are known to show the accuracy of the proposed model.
Resumo:
In this work, a boundary element formulation to analyse plates reinforced by rectangular beams, with columns defined in the domain is proposed. The model is based on Kirchhoff hypothesis and the beams are not required to be displayed over the plate surface, therefore eccentricity effects are taken into account. The presented boundary element method formulation is derived by applying the reciprocity theorem to zoned plates, where beams are treated as thin sub-regions with larger rigidities. The integral representations derived for this complex structural element consider the bending and stretching effects of both structural elements working together. The standard equilibrium and compatibility conditions along interface are naturally imposed, being the bending tractions eliminated along interfaces. The in-plane tractions and the bending and in-plane displacements are approximated along the beam width, reducing the number of degrees of freedom. The columns are introduced into the formulation by considering domain points where tractions can be prescribed. Some examples are then shown to illustrate the accuracy of the formulation, comparing the obtained results with other numerical solutions.
Resumo:
The objective of this paper is the numerical study of the behavior of reinforced concrete beams and columns by non-linear numerical simulations. The numerical analysis is based on the finite element method implemented in CASTEM 2000. This program uses the constitutive elastoplastic perfect model for the steel, the Drucker-Prager model for the concrete and the Newton-Raphson for the solution of non-linear systems. This work concentrates on the determination of equilibrium curves to the beams and force-strain curves to the columns. The numeric responses are confronted with experimental results found in the literature in order to check there liability of the numerical analyses.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The aim of this study was to evaluate the tendency of displacement of the supporting structures of the distal extension removable partial denture (DERPD) associated to the implant with different inclinations of alveolar ridge and implant localizations through a two-dimensional finite-element method. Sixteen mandibular models were fabricated, presenting horizontal, distally descending, distally ascending, or descending-ascending ridges. All models presented the left canine and were rehabilitated with conventional DERPD or implant-retained prosthesis with the ERA system. The models were obtained by the AutoCAD software and transferred to the finite-element software ANSYS 9.0 for analysis. A force of 50 N was applied on the cusp tips of the teeth, with 5 points of loading of 10 N. The results were visualized by displacement maps. For all ridge inclinations, the assembly of the DERPD with distal plate retained by an anterior implant exhibited the lowest requisition of the supporting structures. The highest tendency of displacement occurred in the model with distally ascending ridge with incisal rest. It was concluded that the association of the implant decreased the displacement of the DERPD, and the anterior positioning of the implant associated to the DERPD with the distal plate preserved the supporting structures for all ridges.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The aim of this study was to use two-dimensional finite element method to evaluate the displacement and stress distribution transmitted by a distal extension removable partial denture (DERPD) associated with an implant placed at different inclinations (0, 5, 15, and 30 degrees) in the second molar region of the edentulous mandible ridge. Six hemimandibular models were created: model A, only with the presence of the natural tooth 33; model B, similar to model A, with the presence of a conventional DERPD replacing the missing teeth; model C, similar to the previous model, with a straight implant (0 degrees) in the distal region of the ridge, under the denture base; model D, similar to model C, with the implant angled at 5 degrees in the mesial direction; model E, similar to model C, with the implant angled at 15 degrees in the mesial direction; and model F, similar to ME, with the implant angled at 30 degrees in the mesial direction. The models were created with the use of the AutoCAD 2000 program (Autodesk, Inc, San Rafael, CA) and processed for finite element analysis by the ANSYS 8.0 program (Swanson Analysis Systems, Houston, PA). The force applied was vertical of 50 N on each cusp tip. The results showed that the introduction of the RPD overloaded the supporting structures of the RPD and that the introduction of the implant helped to relieve the stresses of the mucosa alveolar, cortical bone, and trabecular bone. The best stress distribution occurred in model D with the implant angled at 5 degrees. The use of an implant as a support decreased the displacement of alveolar mucosa for all inclinations simulated. The stress distribution transmitted by the DERPD to the supporting structures was improved by the use of straight or slightly inclined implants. According to the displacement analysis and von Mises stress, it could be expected that straight or slightly inclined implants do not represent biomechanical risks to use.