56 resultados para depth filtration


Relevância:

20.00% 20.00%

Publicador:

Resumo:

OBJECTIVE: Pneumoperitoneum during laparoscopy results in transient oliguria and decreased glomerular filtration and renal blood flow. The presence of oliguria and elevated serum creatinine is suggestive of acute renal injury. Serum cystatin C has been described as a new marker for the detection of this type of injury. In this study, our aim was to compare the glomerular filtration rate estimated using cystatin C levels with the rate estimated using serum creatinine in patients with normal renal function who were undergoing laparoscopic surgery. METHODS: In total, 41 patients undergoing laparoscopic cholecystectomy or hiatoplasty were recruited for the study. Blood samples were collected at three time intervals: first, before intubation (T1); second, 30 minutes after the establishment of pneumoperitoneum (T2); and third, 30 minutes after deflation of the pneumoperitoneum (T3). These blood samples were then analyzed for serum cystatin C, creatinine, and vasopressin. The Larsson formula was used to calculate the glomerular filtration rate based on the serum cystatin C levels, and the Cockcroft-Gault formula was used to calculate the glomerular filtration rate according to the serum creatinine levels. RESULTS: Serum cystatin C levels increased during the study (T1 = T2T3; p<0.05). The calculated eGlomerular filtration rate-Larsson decreased, whereas the eGlomerular filtration rate-Cockcroft-Gault increased. There was no correlation between cystatin C and serum creatinine. Additionally, Pearson's analysis showed a better correlation between serum cystatin C and the eGlomerular filtration rate than between serum creatinine and the eGlomerular filtration rate. CONCLUSION: This study demonstrates that serum cystatin C is a more sensitive indicator of changes in the glomerular filtration rate than serum creatinine is in patients with normal renal function who are undergoing laparoscopic procedures.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The multi stage filtration (MSF) is an alternative that permits to enlarge the spectrum of application of the slow sand filtration as for the effluent quality and run duration. In this research the use of MSF technology associated to a granular activated carbon (GAC) column as polishing mechanism of the final effluent was evaluated; in the slow sand filters GAC was used as an intermediate layer and non-woven synthetic fabrics were utilized as a first layer of the filter media. Five different tests were conducted, where the systems subjected to the treatment were: water from the Ipe Lake (Ilha Solteira, Sao Paulo, Brazil); water from the lake with water from a recreational fish pond; water from the lake with a phytoplankton and cyanobacteria overload simulation, with and without the use of the pre-filters as a stage of the treatment. The synthetic fabrics and GAC use resulted in the best turbidity removal and an efficient apparent and true color removal; in spite that the polishing columns reported similar results for those parameters. The utilization of GAC as an intermediate layer contributed to a better organic matter removal and the fabrics improved chlorophyll-a removal. The pre-filtration columns made an efficient algae and cyanobacteria removal, a function that was completed by the filters and reached >98% efficiency. The synthetic non-woven fabrics and GAC inclusion in MSF operation improved performance of this technology with ease of application and operation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We extend the Miles mechanism of wind-wave generation to finite depth. A beta-Miles linear growth rate depending on the depth and wind velocity is derived and allows the study of linear growth rates of surface waves from weak to moderate winds in finite depth h. The evolution of beta is plotted, for several values of the dispersion parameter kh with k the wave number. For constant depths we find that no matter what the values of wind velocities are, at small enough wave age the beta-Miles linear growth rates are in the known deep-water limit. However winds of moderate intensities prevent the waves from growing beyond a critical wave age, which is also constrained by the water depth and is less than the wave age limit of deep water. Depending on wave age and wind velocity, the Jeffreys and Miles mechanisms are compared to determine which of them dominates. A wind-forced nonlinear Schrodinger equation is derived and the Akhmediev, Peregrine and Kuznetsov-Ma breather solutions for weak wind inputs in finite depth h are obtained.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Although highly weathered soils cover considerable areas in tropical regions, little is known about exploration by roots in deep soil layers. Intensively managed Eucalyptus plantations are simple forest ecosystems that can provide an insight into the belowground growth strategy of fast-growing tropical trees. Fast exploration of deep soil layers by eucalypt fine roots may contribute to achieving a gross primary production that is among the highest in the world for forests. Soil exploration by fine roots down to a depth of 10 m was studied throughout the complete cycle in Eucalyptus grandis plantations managed in short rotation. Intersects of fine roots, less than 1 mm in diameter, and medium-sized roots, 1-3 mm in diameter, were counted on trench walls in a chronosequence of 1-, 2-, 3.5-, and 6-year-old plantations on a sandy soil, as well as in an adjacent 6-year-old stand growing in a clayey soil. Two soil profiles were studied down to a depth of 10 m in each stand (down to 6 m at ages 1 and 2 years) and 4 soil profiles down to 1.5-3.0 m deep. The root intersects were counted on 224 m(2) of trench walls in 15 pits. Monitoring the soil water content showed that, after clear cutting, almost all the available water stored down to a depth of 7 m was taken up by tree roots within 1.1 year of planting. The soil space was explored intensively by fine roots down to a depth of 3 m from 1 year after planting, with an increase in anisotropy in the upper layers throughout the rotation. About 60% of fine root intersects were found at a depth of more than 1 m, irrespective of stand age. The root distribution was isotropic in deep soil layers and kriged maps showed fine root clumping. A considerable volume of soil was explored by fine roots in eucalypt plantations on deep tropical soils, which might prevent water and nutrient losses by deep drainage after canopy closure and contribute to maximizing resource uses.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

GPS multipath reflectometry (GPS-MR) is a technique that uses geodetic quality GPS receivers to estimate snow depth. The accuracy and precision of GPS-MR retrievals are evaluated at three different sites: grasslands, alpine, and forested. The assessment yields a correlation of 0.98 and an rms error of 6-8 cm for observed snow depths of up to 2.5 m. GPS-MR underestimates in situ snow depth by 10%-15% at these three sites, although the validation methods do not measure the same footprint as GPS-MR.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The purpose of this study was to evaluate the accuracy of the depth of carious lesions on bitewing radiographs. Methods Recently extracted primary molars had their proximal surfaces evaluated visually (EC) and classified as healthy surface (0), signs that suggest the presence of carious lesions in enamel (1), signs of a superficial lesion in dentin (2) and carious lesions in deep dentin (3). Results The results were obtained by consensus between the investigators. The gold standard was determined by histological analysis. The values of sensitivity, specificity, accuracy and area under the ROC (Receiver Operating Characteristic) curve were evaluated. There was equilibrium between sensitivity (76.92% EC and 88.46% ER) and specificity (95.83% EC and 95.83% ER). Accuracy was 86.01% (EC) and 88.46% (ER). The Spearman correlation test was used to prove the correlation between clinical and radiographic examinations (0.886), for clinical and histological (0.736) and for radiographic and histological analysis (0.843).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Measurements on polymers (Teflon FEP and Mylar) have shown that the secondary electron emission from uncharged surfaces exceeds that from surfaces containing a positive surface charge. The reduced emission of charged surfaces is due to recombination between electrons undergoing emission and trapped holes within the charged layer. During the experiments the surface of the material was kept at a negative potential to assure that all secondary electrons reaching the surface from within the material are actually emitted. An analysis of the results yielded the maximum escape depth of the secondary electrons, and showed that the ratio of the maximum escape depth of the secondaries from Mylar to the maximum escape depth from Teflon is almost the same as the ratio of the corresponding second crossover energies of this polymers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study was undertaken in a 1566 ha drainage basin situated in an area with cuesta relief in the state of São Paulo, Brazil. The objectives were: 1) to map the maximum potential soil water retention capacity, and 2) to simulate the depth of surface runoff in each geographical position of the area based on a typical rainfall event. The database required for the development of this research was generated in the environment of the geographical information system ArcInfo v.10.1. Undeformed soil samples were collected at 69 points. The ordinary kriging method was used in the interpolation of the values of soil density and maximum potential soil water retention capacity. The spherical model allowed for better adjustment of the semivariograms corresponding to the two soil attributes for the depth of 0 to 20 cm, while the Gaussian model enabled a better fit of the spatial behavior of the two variables for the depth of 20 to 40 cm. The simulation of the spatial distribution revealed a gradual increase in the depth of surface runoff for the rainfall event taken as example (25 mm) from the reverse to the peripheral depression of the cuesta (from west to east). There is a positive aspect observed in the gradient, since the sites of highest declivity, especially those at the front of the cuesta, are closer to the western boundary of the watershed where the lowest depths of runoff occur. This behavior, in conjunction with certain values of erodibility and depending on the land use and cover, can help mitigate the soil erosion processes in these areas.