73 resultados para chromosomal in situ hybridization
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Cytogenetic analysis were done on specimens from two populations of Lysapsus limellus limellus. three of L. l. bolivianus and of one of Lysapsus caraya. All animals showed a diploid chromosomal number of 2n=24. The karyotypes of the two L. limellus subspecies were very similar, differing only by the larger amount of telomeric heterochromatin and a small pericentromeric C-band on the short arms of pair 2 in L. l. limellus specimens. The karyotype of L. caraya differed from those of the two L. limellus subspecies in terms of chromosomal morphology, C-banding pattern and location of the main NOR on chromosomes 7 and 6. respectively. The karyotype of the L. l. bolivianus population from Guajara-Mirim/RO differed from those of the other populations of the same subspecies in morphology and heterochromatin pattern of chromosomes 7 and 8. Additional NORs were detected by silver staining and confirmed by FISH in one of the homologues of pairs 1 and 8 in L. l. bolivianus and in pair 7 in L. caraya. These results suggest that a reassessment of the taxonomic status of L. limellus subspecies, especially of the L. l. bolivianus populations, may be necessary. (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
The urocortin (UCN)-like immunoreactivity and UCN mRNA distribution in various regions of the nonprimate mammalian brain have been reported. However, the Edinger-Westphal nucleus (EW) appears to be the only brain site where UCN expression is conserved across species. Although UCN peptides are present throughout vertebrate phylogeny, the functional roles of both UCN and EW remain poorly understood. Therefore, a study focused on UCN system organization in the primate brain is warranted. By using immunohistochemistry (single and double labeling) and in situ hybridization, we have characterized the organization of UCN-expressing cells and fibers in the central nervous system and pituitary of the capuchin monkey (Cebus apella). In addition, the sequence of the prepro-UCN was determined to establish the level of structural conservation relative to the human sequence. To understand the relationship of acetylcholine cells in the EW, a colocalization study comparing choline acetyltransferase (ChAT) and UCN was also performed. The cloned monkey prepro-UCN is 95% identical to the human preprohormone across the matched sequences. By using an antiserum raised against rat UCN and a probe generated from human cDNA, we found that the EW is the dominant site for UCN expression, although UCN mRNA is also expressed in spinal cord lamina IX. Labeled axons and terminals were distributed diffusely throughout many brain regions and along the length of the spinal cord. of particular interest were UCN-immunoreactive inputs to the medial preoptic area, the paraventricular nucleus of the hypothalamus, the oral part of the spinal trigeminal nucleus, the flocculus of the cerebellum, and the spinal cord laminae VII and X. We found no UCN hybridization signal in the pituitary. In addition, we observed no colocalization between ChAT and UCN in EW neurons. Our results support the hypothesis that the UCN system might participate in the control of autonomic, endocrine, and sensorimotor functions in primates.
Resumo:
There are few reports on the genomic organization of 5S rDNA in fish species. To characterize the 5S rDNA nucleotide sequence and chromosomal localization in the Neotropical fishes of the genus Brycon, 5S rDNA copies from seven species were generated by PCR. The nucleotide sequences of the coding region (5S rRNA gene) and the nontranscribed spacer (NTS) were determined, revealing that the 5S rRNA genes were highly conserved, while the NTSs were widely variable among the species analyzed. Moreover, two classes of NTS were detected in each species, characterized by base substitutions and insertions-deletions. Using fluorescence in situ hybridization (FISH), two 5S rDNA chromosome loci that could be related to the two 5S rDNA NTS classes were observed in at least one of the species studied. 5S rDNA sequencing and chromosomal localization permitted the characterization of Brycon spp. and suggest a higher similarity among some of them. The data obtained indicate that the 5S rDNA can be an useful genetic marker for species identification and evolutionary studies.
Resumo:
We report the cloning and characterization of a long interspersed nucleotide element (LINE) fi-om a cichlid fish, Oreochromis niloticus, and show the distribution of this element, called CiLINE2 for cichlid LINE2, in the chromosomes of this species. The identification of an open reading frame in CiLINE2 with amino acid sequence similarity to reverse transcriptases encoded by LINE-like elements in Caenorhabditis elegans, Platemys spixii, Schistosoma mansoni, Gallus gallus (CRI), Drosophila melanogaster (I factor), and Homo sapiens (LINE2), as well as the structure of the element, suggest it is a member of this family of non-long terminal repeat-containing retrotransposons. Search of a DNA sequence database identified sequences similar to CiLINE2 in four other fish species (Haplotaxodon microlepis, Oreochromis mossambicus, Pseudotropheus zebra, and Fugu rubripes). Southern blot hybridization experiments revealed the presence of sequences similar to CiLINE2 in all Tilapiini species analyzed from the genera Oreochromis, Tilapia, and Sarotherodon, and gave an estimated copy number of about 5500 for the haploid genome of O. niloticus. Fluorescent in situ hybridization showed that CiLINE2 sequences were organized in small clusters dispersed over all chromosomes of O. niloticus, with a higher concentration near chromosome ends. Furthermore the long arm of chromosome 1 was strikingly enriched with this sequence. The distribution of LINE2-related elements might underlie the difference in chromosome banding patterns observed between cold-blooded vertebrates and mammals.
Resumo:
The location of chromosomal telomeric repeats (TTAGGG)(n) was investigated in two species of the Molossidae family, Eumops glaucinus and Eumops perotis. The diploid chromosome number (2n) is 40 in E. glaucinus and 48 in E. perotis and the fundamental numbers (FN) are 64 and 58, respectively. It has been suggested that the E. glaucinus karyotype has evolved from the E. perotis karyotype through Robertsonian fusion events. In the present study, the telomeric sequences were detected at the termini of chromosomes in both species. In addition, E. glaucinus also displayed telomeric repeats in centromeric and pericentromeric regions in almost all biarmed chromosomes. Conversely, in E. perotis pericentromeric signals were only observed in two biarmed chromosomes. In both E. glaucinus and E. perotis, such telomeric sequences were observed as part of the heterochromatin. The interstitial sites of telomeric sequences suggest that they are remnants of telomeres of ancestral chromosomes that participated in the fusion event.
Resumo:
The majority of chromosomes in Oreochromis niloticus, as with most fish karyotyped to date, cannot be individually identified owing to their small size. As a first step in establishing a physical map for this important aquaculture species of tilapia we have analyzed the location of the vertebrate telomeric repeat sequence, (TTAGGG)n, in O. niloticus. Southern blot hybridization analysis and a Bal31 sensitivity assay confirm that the vertebrate telomeric repeat is indeed present at O. niloticus chromosomal ends with repeat tracts extending for 4-10 kb on chromosomal ends in erythrocytes. Fluorescent in situ hybridization revealed that (TTAGGG)n is found not only at telomeres, but also at two interstitial loci on chromosome 1. These data support the hypothesis that chromosome 1, which is significantly larger than all the other chromosomes in the karyotype, was produced by the fusion of three chromosomes and explain the overall reduction of chromosomal number from the ancestral teleost karyotype of 2n=48 to 2n=44 observed in tilapia.
Resumo:
In the present study, fluorescence in situ hybridization (FISH) was employed to determine the chromosomal location of genes 18S rDNA and 5S rDNA in four rainbow trout stocks. In specimens from the stocks of Núcleo Experimental de Salmonicultura de Campos do Jordão and Gavião river, 18S genes were located at a subterminal position in the long arms of two submetacentric chromosomes, whereas in specimens from stocks of Mount Shasta and Teresópolis they were found in the short arms. In all analyzed stocks, 5S genes were located in two chromosome pairs. In a subtelocentric pair, 5S genes were present in the short arms and, in the other submetacentric pair, 5S genes were at an interstitial position. In the latter, 18S and 5S genes were contiguous. Taking into account that both 18S and 5S rDNA genes have been localized in the short arm of a submetacentric chromosome in almost all rainbow trout samples so far studied, the presence of such genes in the long arm, as seen in the samples from Núcleo Experimental de Salmonicultura de Campos do Jordão and Gavião river, supports the hypothesis of a pericentric inversion involving this chromosome segment in the ancestor line of these stocks. The observed polymorphism allowed the identification of a very useful genomic marker, and may therefore constitute an important tool in the genetic management of rainbow trout stocks.