138 resultados para chiral symmetry breaking


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

1/N(c) expansion in QCD (with N(c) the number of colors) suggests using a potential from meson sector (e.g., Richardson) for baryons. For light quarks a sigma-field has to be introduced to ensure chiral symmetry breaking (chi-SB). It is found that nuclear matter properties can be used to pin down the chi-SB modeling. All masses, M(N), m-sigma, m-omega, are found to scale with density. The equations are solved self-consistently.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Studies of the structure of excited baryons are key factors to the N* program at Jefferson Lab (JLab). Within the first year of data taking with the Hall B CLAS12 detector following the 12 GeV upgrade, a dedicated experiment will aim to extract the N* electrocouplings at high photon virtualities Q 2. This experiment will allow exploration of the structure of N* resonances at the highest photon virtualities ever achieved, with a kinematic reach up to Q2 = 12 GeV2. This high-Q 2 reach will make it possible to probe the excited nucleon structures at distance scales ranging from where effective degrees of freedom, such as constituent quarks, are dominant through the transition to where nearly massless bare-quark degrees of freedom are relevant. In this document, we present a detailed description of the physics that can be addressed through N* structure studies in exclusive meson electroproduction. The discussion includes recent advances in reaction theory for extracting N* electrocouplings from meson electroproduction off protons, along with Quantum Chromodynamics (QCD)-based approaches to the theoretical interpretation of these fundamental quantities. This program will afford access to the dynamics of the nonperturbative strong interaction responsible for resonance formation, and will be crucial in understanding the nature of confinement and dynamical chiral symmetry breaking in baryons, and how excited nucleons emerge from QCD. © 2013 World Scientific Publishing Company.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Assuming that the 125 GeV particle observed at the LHC is a composite scalar and responsible for the electroweak gauge symmetry breaking, we consider the possibility that the bound state is generated by a non-Abelian gauge theory with dynamically generated gauge boson masses and a specific chiral symmetry breaking dynamics motivated by confinement. The scalar mass is computed with the use of the Bethe-Salpeter equation and its normalization condition as a function of the SU(N) group and the respective fermionic representation. If the fermions that form the composite state are in the fundamental representation of the SU(N) group, we can generate such a light boson only for one specific number of fermions for each group. We address the uncertainties underlying this result, when considering the strong dynamics in isolation. © 2013 American Physical Society.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The vacuum energy of QED, as a function of the coupling constant α, is shown to have an absolute minimum at the critical coupling αc=π/3. The effect of chiral symmetry breaking diminishes as the coupling is increased. We argue that these aspects of the vacuum energy shall remain unaltered beyond the ladder approximation.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We propose a scheme in which the masses of the heavier leptons obey seesaw type relations. The light lepton masses, except the electron and the electron neutrino ones, are generated by one loop level radiative corrections. We work in a version of the 3-3-1 electroweak model that predicts singlets (charged and neutral) of heavy leptons beyond the known ones. An extra U(1)(Omega) symmetry is introduced in order to avoid the light leptons getting masses at the tree level. The electron mass induces an explicit symmetry breaking at U(1)(Omega). We discuss also the mixing matrix among four neutrinos. The new energy scale required is not higher than a few TeV.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The covariant quark model of the pion based on the effective nonlocal quark-hadron Lagrangian involving nonlocality induced by instanton fluctuations of the QCD vacuum is reviewed. Explicit gauge invariant formalism allows us to construct the conserved vector and axial currents and to demonstrate their consistency with the Ward-Takahashi identities and low-energy theorems. The spontaneous breaking of chiral symmetry results in the dynamic quark mass and the vertex of the quark-pion interaction, both momentum-dependent. The parameters of the instanton vacuum, the average size of the instantons, and the effective quark mass are expressed in terms of the vacuum expectation values of the lowest dimension quark-gluon operators and low-energy pion observables. The transition pion form factor for the processes gamma*gamma --> pi (0) and gamma*gamma* --> pi (0) is analyzed in detail. The kinematic dependence of the transition form factor at high momentum transfers allows one to determine the relationship between the light-cone amplitude of the quark distribution in the pion and the quark-pion vertex function. Its dynamic dependence implies that the transition form factor gamma*gamma --> pi (0) at high momentum transfers is acutely sensitive to the size of the nonlocality of nonperturbative fluctuations in the QCD vacuum. In the leading twist, the distribution amplitude and the distribution function of the valence quarks in the pion are calculated at a low normalization point of the order of the inverse average instanton size rho (-1)(c). The QCD results are evolved to higher momentum transfers and are in reasonable agreement with available experimental data on the pion structure.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Chiral loop corrections for hadronic properties are considered in a constituent quark model. It is emphasized that the correct implementation of such corrections requires a sum over intermediate hadronic states. The leading non-analytic corrections are very important for baryon magnetic moments and explain the failure of the sum rule (mu(Sigma+) + 2 mu(Sigma-))/mu(A) = -1 predicted by the constituent quark model. (C) 2000 Elsevier B.V. B.V. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The time evolution of the matter produced in high energy heavy-ion collisions seems to be well described by relativistic viscous hydrodynamics. In addition to the hydrodynamic degrees of freedom related to energy-momentum conservation, degrees of freedom associated with order parameters of broken continuous symmetries must be considered because they are all coupled to each other. of particular interest is the coupling of degrees of freedom associated with the chiral symmetry of QCD. Quantum and thermal fluctuations of the chiral fields act as noise sources in the classical equations of motion, turning them into stochastic differential equations in the form of Ginzburg-Landau-Langevin (GLL) equations. Analytic solutions of GLL equations are attainable only in very special circumstances and extensive numerical simulations are necessary, usually by discretizing the equations on a spatial lattice. However, a not much appreciated issue in the numerical simulations of GLL equations is that ultraviolet divergences in the form of lattice-spacing dependence plague the solutions. The divergences are related to the well-known Rayleigh-Jeans catastrophe in classical field theory. In the present communication we present a systematic lattice renormalization method to control the catastrophe. We discuss the implementation of the method for a GLL equation derived in the context of a model for the QCD chiral phase transition and consider the nonequilibrium evolution of the chiral condensate during the hydrodynamic flow of the quark-gluon plasma.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The Nolen-Schiffer anomaly is the long standing discrepancy between theory and experiment of binding energy differences of mirror nuclei. It appears that the anomaly is largely explained by the charge symmetry breaking force generated by the rho(0)-omega mixing. In this paper I discuss the effect of the rho(0)-omega mixing to the binding energy differences in relativistic models of the nucleus. I also discuss the issue of momentum dependence of rho(0)-omega mixing amplitude and present an alternative explanation of the anomaly based on the partial restoration of chiral symmetry in the nucleus.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We assume that the nuclear potential for distances larger than 2.5 fm is given just by the exchanges of one and two pions and, for the latter, we adopt a model based on chiral symmetry and subthreshold pion-nucleon amplitudes, which contains no free parameters. The predictions produced by this model for nucleon-nucleon observables are calculated and shown to agree well with both experiment and those due to phenomenological potentials.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We show that the implementation of chiral symmetry in recent studies of the hadron spectrum in the context of the constituent quark model is inconsistent with chiral perturbation theory. In particular, we show that the leading nonanalytic (LNA) contributions to the hadron masses are incorrect in such approaches. The failure to implement the correct chiral behaviour of QCD results in incorrect systematics for the corrections to the masses. © 1999 Published by Elsevier Science B.V. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We discuss two aspects of charmonium in medium. First, we present results of a recent study that compares the phenomenology of charmonium spectroscopy using smooth and sudden string breaking potentials. Next, we present results of a study that explores the possibility that J/ψ might be bound in a large nucleus through the excitation of a color singlet intermediate states of D and D* mesons with density masses. © 2010 American Institute of Physics.