242 resultados para cement retention
Resumo:
Objectives. The purpose of this paper is to modify the conventional calcium fluoro-aluminosilicate glass, which is used in the formation of glass ionomer cements (CIGs) by the niobium addition and to study the properties of GICs obtained.Materials and methods. Sol-gel process was used to prepare the powder at lower temperature than fusion method. Glass-ceramic powder obtained in this way was used to prepare the GICs. The properties such as working and setting times, microhardness and diametral tensile strength were evaluated for the experimental GICs and a commercial luting cement.Results. The ideal powder:liquid (P:L) ratio determined to prepare the experimental GICs was equal to 1:1. The cements prepared using this ratio showed working and setting times similar to the commercial GICs. in mechanical tests it was observed that microhardness and diametral tensile strength of the experimental GICs decreased significantly with the reduction of P:L ratio. on the other hand, the results obtained in microhardness tests indicated that the presence of niobium was a positive factor.Significance. The chemical process allows the development of glass-ceramic powder at 600 degrees C which is the goal of the present paper. It was concluded that GICs containing niobium might be used in dental applications and these results encourage further researches on other compositions. (c) 2007 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.
Resumo:
This study evaluated the influence of addition of 10% calcium chloride (CaCl(2)) on the setting time, solubility, disintegration, and pH of white MTA (WMTA) and white Portland cement (WPC). A test of the setting time was performed following the #57 ADA specifications and a test of the final setting time according to the ASTM. For the solubility tests disintegration and pH, Teflon rings were filled with the cements and weighed after setting. After 24 h in a desiccator, they were once again weighed. Thereafter, they were immersed in MiliQ water for 24 and 72 h and 7, 14, and 28 days, with maintenance in the desiccator and weighing between periods. The pH of water in which the rings were immersed was measured immediately after contact with them and in the other periods. The addition of CaCl(2) provided a significant reduction (50%) in the initial setting time of cements. The final setting time of WMTA was reduced in 35.5% and the final setting time of WPC in 68.5%. The WMTA with CaCl(2) absorbed water and gained weight with time, except for in the 24-h period. The addition of CaCl(2) to the WPC reduced its solubility. The addition of CaCl(2) increased the pH of WMTA in the immediate period and at 24 and 72 h and for WPC in the immediate period and at 24 h. The addition of CaCl(2) to WMTA and WPC reduced the setting times and solubility of both and increased the pH of cements in the initial periods. (J Endod 2009;35:550-554)
Resumo:
Retention of particulate organic matter was investigated over a range of water discharges in pool and riffle zones of a tropical stream (Itauna Stream, São Paulo, Brazil). A closed-system leaf release and capture method was used to quantify leaf retention in a 50-m reach of the stream. Instantaneous retention rates (k) were calculated by a negative exponentialmodel and specific retention rates (ke) computed for each 1m interval. The mean k was 0.0161 +/- 0.0101 (S.E.) and ranged from 0.005 to 0.036 during the study period. This suggests a low retention of particulate matter. The evidence provided by this study shows that there was a relationship between retention and discharge. At low discharges, greater percentages of leaves were retained in a 3-h period while high discharges resulted in low retention percentages within the studied reach. In the Itauna Stream, no significant difference (p < 0.05) was found between the ke values of pool and riffle zones.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Objectives: To evaluate the influence of different protocols for resin cement removal during cementation on biofilm formation.Methods: Twenty-eight ceramic blocks, which were injected under pressure, were placed over enamel blocks obtained from freshly extracted bovine incisors. The ceramic blocks were cemented to the enamel blocks using a dual-cured resin cement and the excess resin was removed according to the experimental group: TS: Teflon spatula; BR: brush; BR+: brush and polishing; SB+: scalpel blade and polishing. After autoclaving, the samples were colonised by incubation in a sucrose broth suspension standardised with Streptococcus mutans in microaerophilic stove. Specimens were quantitatively analysed for bacterial adherence at the adhesive interface using confocal laser scanning microscopy and counting the colony forming units, and qualitatively analysed using SEM. The roughness (Ra/Rz/RSm) was also analysed. Data were analysed by 1-way ANOVA and Tukey's test (5%).Results: The roughness values ranged from 0.96 to 1.69 mu m for Ra (p > 0.05), from 11.59 to 22.80 mu m for Rz (p = 0.02 < 0.05) and from 293.2 to 534.3 mu m for RSm (p = 0.00). Bacterial adhesion varied between 1,974,000 and 2,814,000 CFU/ml (p = 0.00). Biofilm mean thickness ranged from 0.477 and 0.556 mu m (p > 0.05), whilst the biovolume values were between 0.388 and 0.547 mu m(3)/mu m(2) (p = 0.04). Lower values for roughness, bacterial adhesion, biofilm thickness and biovolume were found with BR, whilst TS presented the highest values for most of the parameters. SEM images confirmed the quantitative values.Conclusions: The restoration margin morphology and interface roughness affects bacterial accumulation. The brush technique promoted less bacterial colonisation at the adhesive interface than did the other removal methods.Clinical significance: The brush technique seems to be a good option for removing the excess resin cement after adhesive cementation in clinical practice, as indicated by its better results with lower bacterial colonisation. (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
Background: Mucoceles are benign lesions related to the minor salivary glands and their respective ducts frequently affecting oral structures which are generally asymptomatic. Mucoceles are generally characterized by swollen nodular lesions preferentially located on the lower lip and differ from the so-called ranulas, which are lesions located on the floor of the mouth and related to the sublingual or submandibular glands.Methods: The objective of the present study was to analyze data such as age, gender, race and site of the lesion of 173 mucocele cases diagnosed at the Discipline of Stomatology, Sao Jose dos Campos Dental School, UNESP, over a period of 24 years (April 1980 to February 2003).Results: of the 173 cases analyzed, 104 (60.12%) were females and 69 (39.88%) were males. Age ranged from 4 to 70 years (mean +/- SD: 17 +/- 9.53) and most patients were in the second decade of life (n = 86, 49.42%); white (n = 124, 71.68%). The lower lip was the site most frequently affected by the lesions (n = 135, 78.03%), whereas the lowest prevalence was observed for the soft palate, buccal mucosa, and lingual frenum.Conclusion: In this study, mucoceles predominated in white female subjects in the second decade of life, with the lower lip being the most frequently affected site.
Resumo:
Foi avaliado o possível efeito de tratamentos superficiais em pinos de fibra de carbono lisos, quando comparados aos pinos serrilhados, na retenção à resina composta empregada na confecção de núcleos de preenchimento. Foram utilizados cinqüenta pinos de fibra de carbono, divididos em cinco grupos: os quatro primeiros grupos eram constituídos por pinos do tipo liso, cujas superfícies foram tratadas, e o último grupo por dez pinos do tipo serrilhado. Foram desenvolvidas matrizes de resina acrílica com um leito ajustado para conter o pino, com um alargamento na porção coronária para posterior preenchimento com resina composta. Após o tratamento superficial, todos os pinos receberam camadas de primer, foram secos e então ajustados à matriz de resina, colocando-se a resina composta autopolimerizável na porção coronária para um núcleo de preenchimento de 3 mm. As amostras foram submetidas a termociclagem e armazenadas em água destilada por uma semana. Os espécimes foram testados por meio de ensaios mecânicos de tração, à velocidade de 0,5 mm/min, até o deslocamento do conjunto ou a fratura da resina do núcleo. As conclusões foram as seguintes: a) o tratamento superficial nos grupos tratados por meio de jateamento (Grupo A), pontas diamantadas marcadoras de profundidade para facetas laminadas (Grupo C) e alteração da morfologia da extremidade coronária (Grupo D) conferiu aos pinos lisos valores de retenção comparáveis aos dos pinos serrilhados (Grupo E) nos ensaios de tração, porém sem diferença estatisticamente significativa entre estes grupos; b) os pinos tratados por meio de pontas diamantadas de granulação média (Grupo B) obtiveram valores de retenção menores que os demais grupos.
Resumo:
The objective of this study was to evaluate the durability of bond strength between a resin cement and aluminous ceramic submitted to various surface conditioning methods. Twenty-four blocks (5 X 5 X 4 mm 3) of a glass-in filtrated zirconia-alumina ceramic (inCeram Zirconia Classic) were randomly divided into three surface treatment groups: ST1-Air-abrasion with 110-mu m Al2O3 particles + silanization; ST2-Laboratory tribochemical silica coating method (110-mu m Al2O3, ilO-PM Silica) (Rocatec) + silanization; ST3-Chairside tribochemical silica coating method (30-mu m SiOx) (CoJet) + silanization. Each treated ceramic block was placed in its silicone mold with the treated surface exposed. The resin cement (Panavia F) was prepared and injected into the mold over the treated surface. Specimens were sectioned to achieve nontrimmed bar specimens (14 sp/block) that were randomly divided into two conditions: (a) Dry-microtensile test after sectioning; (b) Thermocycling (TC)-(6,000X, 5-55 degrees C) and water storage (150 days). Thus, six experimental groups were obtained (11 = 50): Gr1-ST1 + dry; Gr2-ST1 + TC. Gr3-ST2 + dry; Gr4-ST2 + TC; Gr5-ST3 + dry; Gr6ST3 + TC. After microtensile testing, the failure types were noted. ST2 (25.1 +/- 11) and ST3 (24.1 +/- 7.4) presented statistically higher bond strength (MPa) than that of STI (17.5 +/- 8) regardless of aging conditions (p < 0.0001). While Gr2 revealed the lowest results (13.3 +/- 6.4), the other groups (21.7 +/- 7.4-25. 9 +/- 9.1) showed statistically no significant differences (two-way ANOVA and Tukey's test, a 0.05). The majority of the failures were mixed (82%) followed by adhesive failures (18%). Gr2 presented significantly higher incidence of ADHESIVE failures (54%) than those of other groups (p = 0.0001). Both laboratory and chairside silica coating plus silanization showed durable bond strength. After aging, airabrasion with 110-mu m Al2O3 + silanization showed the largest decrease indicating that aging is fundamental for bond strength testing for acid-resistant Arconia ceramics in order to estimate their long-term performance in the mouth. (c) 2007 Wiley Periodicals, Inc.
Resumo:
Purpose: To evaluate the effect of different cleaning media on the adhesion of resin cement to feldspathic ceramic after etching.Materials and Methods: The cementation surfaces of ceramic blocks (N = 20, n = 5 per group) were etched with 10% hydrofluoric acid (HF) gel for 20 s and rinsed for 60 s. They were then randomly assigned to 4 groups: G1: air-water spray+drying (control); G2: ultrasonic cleaning in distilled water for 4 min+drying; G3: ultrasonic cleaning in 99.5% acetone for 4 min+drying; G4: ultrasonic cleaning in 70% alcohol for 4 min+drying. The ceramic blocks were silanized and cemented (RelyX ARC) to the composite blocks. Subsequently, the microtensile bond strength test (mu TBS) was performed. In addition, EDS analysis was made to assess the elemental composition of the conditioned and cleaned ceramic surfaces.Results: A significantly higher mean mu TBS was obtained when specimens had been ultrasonically cleaned in distilled water (G2: 18.8 +/- 0.4 MPa) (p < 0.05) compared to other groups (G1: 16.6 +/- 0.5; G3: 16.1 +/- 0.9; G4: 15.8 +/- 1.4) (one-way ANOVA). EDS analysis indicated the presence of F- only in G1. Dissolved precipitates after HF etching were removed by ultrasonic cleaning.Conclusion: Cleaning the HF-etched ceramic surface ultrasonically in distilled water is recommended, instead of rinsing it with air-water spray only.
Resumo:
Purpose: To evaluate the effect of cement shade, light-curing unit, and water storage on tensile bond strength (a) of a feldspathic ceramic resin bonded to dentin.Materials and Methods: The dentin surface of 40 molars was exposed and etched with 37% phosphoric acid, then an adhesive system was applied. Forty blocks of feldspathic ceramic (Vita VM7) were produced. The ceramic surface was etched with 10% hydrofluoric acid for 60 s, followed by the application of a silane agent and a dual-curing resin cement (Variolink II). Ceramic blocks were cemented to the treated dentin using either A3 or transparent (Tr) shade cement that was activated using either halogen or LED light for 40 s. All blocks were stored in 37 degrees C distilled water for 24 h before cutting to obtain non-trimmed bar-shaped specimens (adhesive area = 1 mm(2) +/- 0.1) for the microtensile bond strength test. The specimens were randomly grouped according to the storage time: no storage or stored for 150 days in 37 degrees C distilled water. Eight experimental groups were obtained (n = 30). The specimens were submitted to the tensile bond strength test using a universal testing machine at a crosshead speed of 1 mm/min. The data were statistically analyzed using ANOVA and Tukey's post-hoc tests (alpha = 0.05).Results: The mean bond strength values were significantly lower for the corresponding water stored groups, except for the specimens using A3 resin cement activated by halogen light. There was no significance difference in mean bond strength values among all groups after water storage.Conclusion: Water storage had a detrimental effect under most experimental conditions. For both cement shades investigated (Tr and A3) under the same storage condition, the light-curing units (QTH and LED) did not affect the mean microtensile bond strengths of resin-cemented ceramic to dentin.
Resumo:
Objective: This study evaluated the surface hardness of a resin cement (RelyX ARC) photoactivated through indirect composite resin (Cristobal) disks of different thicknesses using either a light- emitting diode (LED) or quartz tungsten halogen (QTH) light source. Material and Methods: Eighteen resin cement specimens were prepared and divided into 6 groups according to the type of curing unit and the thickness of resin disks interposed between the cement surface and light source. Three indentations (50 g for 15 s) were performed on the top and bottom surface of each specimen and a mean Vickers hardness number (VHN) was calculated for each specimen. The data were analyzed using two-way ANOVA and Tukey-Kramer test was used for post-hoc pairwise comparisons. Results: Increased indirect resin disk thickness resulted in decreased mean VHN values. Mean VHN values for the top surfaces of the resin cement specimens ranged from 23.2 to 46.1 (QTH) and 32.3 to 41.7 (LED). The LED curing light source produced higher hardness values compared to the QTH light source for 2- and 3-mm-thick indirect resin disks. The differences were clinically, but not statistically significant. Increased indirect resin disk thickness also resulted in decreased mean VHN values for the bottom surfaces of the resin cement: 5.8 to 19.1 (QTH) and 7.5 to 32.0 (LED). For the bottom surfaces, a statistically significant interaction was also found between the type of curing light source and the indirect resin disk thickness. Conclusions: Mean surface hardness values of resin cement specimens decreased with the increase of indirect resin disk thickness. The LED curing light source generally produced higher surface hardness values.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Objective. To determine the influence of cement thickness and ceramic/cement bonding on stresses and failure of CAD/CAM crowns, using both multi-physics finite element analysis and monotonic testing.Methods. Axially symmetric FEA models were created for stress analysis of a stylized monolithic crown having resin cement thicknesses from 50 to 500 mu m under occlusal loading. Ceramic-cement interface was modeled as bonded or not-bonded (cement-dentin as bonded). Cement polymerization shrinkage was simulated as a thermal contraction. Loads necessary to reach stresses for radial cracking from the intaglio surface were calculated by FEA. Experimentally, feldspathic CAD/CAM crowns based on the FEA model were machined having different occlusal cementation spaces, etched and cemented to dentin analogs. Non-bonding of etched ceramic was achieved using a thin layer of poly(dimethylsiloxane). Crowns were loaded to failure at 5 N/s, with radial cracks detected acoustically.Results. Failure loads depended on the bonding condition and the cement thickness for both FEA and physical testing. Average fracture loads for bonded crowns were: 673.5 N at 50 mu m cement and 300.6 N at 500 mu m. FEA stresses due to polymerization shrinkage increased with the cement thickness overwhelming the protective effect of bonding, as was also seen experimentally. At 50 mu m cement thickness, bonded crowns withstood at least twice the load before failure than non-bonded crowns.Significance. Occlusal "fit" can have structural implications for CAD/CAM crowns; pre-cementation spaces around 50-100 mu m being recommended from this study. Bonding benefits were lost at thickness approaching 450-500 mu m due to polymerization shrinkage stresses. (C) 2012 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.