126 resultados para bars
Resumo:
The Nabileque fluvial fan is a Quaternary depositional system located along the southwestern border of the Pantanal, covering an area of approximately 9,100 km 2. It is a peculiar alluvial system because it is not associated with inflow from adjacent plateaus. The Nabileque megafan is formed by the Paraguay River at the exit of the Pantanal wetland, coalescing with the Pilcomayo megafan of the Chaco basin. A geomorphological zonation analysis was performed making use of remote sensing data with field verification. Most of the area is a vast alluvial plain made of Pleistocene deposits, whose surface is marked by the presence of an intricate network of distributary paleochannels. Areas blanketed by Pleistocene deposits are dissected by erosional streams and subject to frequent flooding events. The Paraguay River flows in a meander belt constrained by NE fractures associated with the Transbrasiliano Lineament, but deflects towards the SSE after the Negro River confluence composing the system's peripheral drainage. An abandoned meander belt is preserved within a remarkable N-S incised-valley that is interpreted as the ancient Paraguay River course. Processes of avulsion and river capture are suggested to explain the observed changes of the river course. The Nabileque River is an underfit stream within the incised-valley, cutting paleomeanders and point bars of the previous Paraguay River course.
Resumo:
Aim: To describe the adaptation of the Edentulous Ridge Expansion (E.R.E.) technique for implant removal. Material and Methods: The E.R.E. technique for the removal of failed implants is described in detail. A clinical case is also reported. In a patient carrying a full arch removable prosthesis in the upper jaw, sustained by two bars, two out of five implants were found to be fractured. Bucco-lingual partial-thickness flaps were used to access the fractured implants. The implants were subsequently removed applying the E.R.E. technique. Two recipient sites were prepared in the same position, using bone expanders, and two new implants were installed. Results: After 4 months of healing, the implants were integrated and a new bar was fabricated, and the old prosthesis readapted. Conclusion: The ERE technique may be successfully applied for the removal of failed implants, and the immediate or delayed reinstallation of new implants. © 2012 John Wiley & Sons A/S.
Resumo:
Background: Hypertension can be generated by a great number of mechanisms including elevated uric acid (UA) that contribute to the anion superoxide production. However, physical exercise is recommended to prevent and/or control high blood pressure (BP). The purpose of this study was to investigate the relationship between BP and UA and whether this relationship may be mediated by the functional fitness index.Methods: All participants (n = 123) performed the following tests: indirect maximal oxygen uptake (VO2max), AAHPERD Functional Fitness Battery Test to determine the general fitness functional index (GFFI), systolic and diastolic blood pressure (SBP and DBP), body mass index (BMI) and blood sample collection to evaluate the total-cholesterol (CHOL), LDL-cholesterol (LDL-c), HDL-cholesterol (HDL-c), triglycerides (TG), uric acid (UA), nitrite (NO2) and thiobarbituric acid reactive substances (T-BARS). After the physical, hemodynamic and metabolic evaluations, all participants were allocated into three groups according to their GFFI: G1 (regular), G2 (good) and G3 (very good).Results: Baseline blood pressure was higher in G1 when compared to G3 (+12% and +11%, for SBP and DBP, respectively, p<0.05) and the subjects who had higher values of BP also presented higher values of UA. Although UA was not different among GFFI groups, it presented a significant correlation with GFFI and VO2max. Also, nitrite concentration was elevated in G3 compared to G1 (140±29 μM vs 111± 29 μM, for G3 and G1, respectively, p<0.0001). As far as the lipid profile, participants in G3 presented better values of CHOL and TG when compared to those in G1.Conclusions: Taking together the findings that subjects with higher BP had elevated values of UA and lower values of nitrite, it can be suggested that the relationship between blood pressure and the oxidative stress produced by acid uric may be mediated by training status. © 2013 Trapé et al.; licensee BioMed Central Ltd.
Resumo:
This paper presents a numerical approach to model the complex failure mechanisms that define the ultimate rotational capacity of reinforced concrete beams. The behavior in tension and compression is described by a constitutive damage model derived from a combination of two specific damage models [1]. The nonlinear behavior of the compressed region is treated by the compressive damage model based on the Drucker-Prager criterion written in terms of the effective stresses. The tensile damage model employs a failure criterion based on the strain energy associated with the positive part the effective stress tensor. This model is used to describe the behavior of very thin bands of strain localization, which are embedded in finite elements to represent multiple cracks that occur in the tensioned region [2]. The softening law establishes dissipation energy compatible with the fracture energy of the concrete. The reinforcing steel bars are modeled by truss elements with elastic-perfect plastic behavior. It is shown that the resulting approach is able to predict the different stages of the collapse mechanism of beams with distinct sizes and reinforcement ratios. The tensile damage model and the finite element embedded crack approach are able to describe the stiffness reduction due to concrete cracking in the tensile zone. The truss elements are able to reproduce the effects of steel yielding and, finally, the compressive damage model is able to describe the non-linear behavior of the compressive zone until the complete collapse of the beam due to crushing of concrete. The proposed approach is able to predict well the plastic rotation capacity of tested beams [3], including size-scale effects.
Resumo:
This paper discusses the theoretical and experimental results obtained for the excitonic binding energy (Eb) in a set of single and coupled double quantum wells (SQWs and CDQWs) of GaAs/AlGaAs with different Al concentrations (Al%) and inter-well barrier thicknesses. To obtain the theoretical Eb the method proposed by Mathieu, Lefebvre and Christol (MLC) was used, which is based on the idea of fractional-dimension space, together with the approach proposed by Zhao et al., which extends the MLC method for application in CDQWs. Through magnetophotoluminescence (MPL) measurements performed at 4 K with magnetic fields ranging from 0 T to 12 T, the diamagnetic shift curves were plotted and adjusted using two expressions: one appropriate to fit the curve in the range of low intensity fields and another for the range of high intensity fields, providing the experimental Eb values. The effects of increasing the Al% and the inter-well barrier thickness on E b are discussed. The Eb reduction when going from the SQW to the CDQW with 5 Å inter-well barrier is clearly observed experimentally for 35% Al concentration and this trend can be noticed even for concentrations as low as 25% and 15%, although the Eb variations in these latter cases are within the error bars. As the Zhao's approach is unable to describe this effect, the wave functions and the probability densities for electrons and holes were calculated, allowing us to explain this effect as being due to a decrease in the spatial superposition of the wave functions caused by the thin inter-well barrier. © 2013 Elsevier B.V.
Resumo:
A comprehensive biostratinomic study was carried out with abundant stems from the Lower Permian Motuca Formation of the intracratonic Parnaíba Basin, central-north Brazil. The fossils represent a rare tropical to subtropical paleofloristic record in north Gondwana. Tree ferns dominate the assemblages (mainly Tietea, secondarily Psaronius), followed by gymnosperms, sphenophytes, other ferns and rare lycophytes. They are silica-permineralized, commonly reach 4 m length (exceptionally more than 10 m), lie loosely on the ground or are embedded in the original sandstone or siltstone matrix, and attract particular attention because of their frequent parallel attitudes. Many tree fern stems present the original straight cylindrical to slightly conical forms, other are somewhat flattened, and the gymnosperm stems are usually more irregular. Measurements of stem orientations and dimensions were made in three sites approximately aligned in a W-E direction in a distance of 27.3 km at the conservation unit Tocantins Fossil Trees Natural Monument In the eastern site, rose diagrams for 54 stems indicate a relatively narrow azimuthal range to SE. These stems commonly present attached basal bulbous root mantles and thin cylindrical sandstone envelopes, which sometimes hold, almost adjacent to the lateral stem surface, permineralized fern pinnae and other small plant fragments. In the more central site, 82 measured stems are preferentially oriented in the SW-NE direction, the proportion of gymnosperms is higher and cross-stratification sets of sandstones indicate paleocurrents mainly to NE and secondarily to SE. In the western site, most of the 42 measured stems lie in E-W positions. The predominantly sandy succession, where the fossil stems are best represented, evidences a braided fluvial system under semiarid conditions. The low plant diversity, some xeromorphic features and the supposedly almost syndepositional silica impregnation of the plants are coherent with marked dry seasons. Thick mudstones and some coquinites below and above the sandy interval may represent lacustrine facies formed in probably more humid conditions. The taphonomic history of the preserved plants began with exceptional storms that caused fast-flowing high water in channels and far into the floodplains. In the eastern site region, many tree ferns only fell, thus sometimes covering and protecting plant litter and leaves from further fragmentation. Assemblages of the central and western sites suggest that the trees were uprooted and transported in suspension (floating) parallel to the flow. Heavier ends of stems (according to their form or because of attached basal bulbous root mantle or large apical fronds) were oriented to upstream because of inertial forces. During falling water stage, the stems were stranded on riverbanks, usually maintaining the previous transport orientation, and were slightly buried. The perpendicular or oblique positions of some stems may have been caused by interference with other stems or shallow bars. Rare observed stems were apparently waterlogged before the final depositional process and transported as bedload. The differences of interpreted channel orientations between the three sites are expected in a braided fluvial system, considering the very low gradients of the basin and the work scale in the order of tens of kilometers. The mean direction of the drainage probably was to east and the flows apparently became weaker downstream. This study seems to provide reliable data for paleocurrent interpretations, especially considering areas with scarce preserved sedimentary structures. © 2013 Elsevier Ltd.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Matemática em Rede Nacional - IBILCE
Resumo:
Pós-graduação em Ciências Sociais - FFC
Resumo:
Pós-graduação em Engenharia Civil - FEIS
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)