56 resultados para asymmetry equation of state of nuclear matter
Resumo:
Recent experimental and theoretical advances in the creation and description of bright matter wave solitons are reviewed. Several aspects are taken into account, including the physics of soliton train formation as the nonlinear Fresnel diffraction, soliton-soliton interactions, and propagation in the presence of inhomogeneities. The generation of stable bright solitons by means of Feshbach resonance techniques is also discussed. © World Scientific Publishing Company.
Resumo:
The in-medium influence on π0 photoproduction from spin zero nuclei is carefully studied in the GeV range using a straightforward Monte Carlo analysis. The calculation takes into account the relativistic nuclear recoil for coherent mechanisms (electromagnetic and nuclear amplitudes) plus a time dependent multi-collisional intranuclear cascade approach (MCMC) to describe the transport properties of mesons produced in the surroundings of the nucleon. A detailed analysis of the meson energy spectra for the photoproduction on 12C at 5.5 GeV indicates that both the Coulomb and nuclear coherent events are associated with a small energy transfer to the nucleus (≲ 5 MeV), while the contribution of the nuclear incoherent mechanism is vanishing small within this kinematical range. The angular distributions are dominated by the Primakoff peak at extreme forward angles, with the nuclear incoherent process being the most important contribution above θπ0 ≲ 20. Such consistent Monte Carlo approach provides a suitable method to clean up nuclear backgrounds in some recent high precision experiments, such as the PrimEx experiment at the Jefferson Laboratory Facility.
Resumo:
The aim of this study was to determine the extent of DNA fragmentation and the presence of single/denatured or double stranded of DNA in sperm with large nuclear vacuoles (LNV) selected by high-magnification. A total of 30 patients had fresh semen samples prepared by discontinuous concentration gradient. Sperm with normal nucleus (NN) and LNV were selected at 8400x magnification and placed in different slides. DNA fragmentation was determined by TUNEL assay. Denatured and double stranded DNA was identified by acridine orange fluorescence method. The percentage of DNA fragmentation in LNV sperm (29%) was significantly higher (P<0.001) than NN sperm (15.8%). Therefore, cleavage of genomic DNA in low molecular weight DNA fragments (mono and oligonucleosomes), and single strand breaks (nicks) in high molecular weight DNA occur more frequently in LNV. Identically, the percentage denatured stranded DNA in sperm with LNV (67.9%) was significantly higher (P <0.0001) than NN sperm (33%). The high level of denatured DNA in sperm with LNV suggests precocious decondensation and disaggregation of sperm chromatin fibers. Our results support an association between LNV sperm and DNA damage, and the routine selection and injection of morphological motile sperm at high magnification for ICSI. The adverse effect (DNA fragmentation or denaturation) leads to concern particularly about the possibility of iatrogenic transmission of genetic abnormalities. Copyright - SBRA - Sociedade Brasileira de Reprodução Assistida.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
The nuclear poly(A)-binding protein 1 (PABPN1) is a ubiquitously expressed protein that plays a critical role in polyadenylation. Short expansions of the polyalanine tract in the N-terminus of PABPN1 lead to oculopharyngeal muscular dystrophy (OPMD), which is an adult onset disease characterized by eyelid drooping, difficulty in swallowing and weakness in the proximal limb muscles. Although significant data from in vitro biochemical assays define the function of PABPN1 in control of poly(A) tail length, little is known about the role of PABPN1 in mammalian cells. To assess the function of PABPN1 in mammalian cells and specifically in cells affected in OPMD, we examined the effects of PABPN1 depletion using siRNA in primary mouse myoblasts from extraocular, pharyngeal and limb muscles. PABPN1 knockdown significantly decreased cell proliferation and myoblast differentiation during myogenesis in vitro. At the molecular level, PABPN1 depletion in myoblasts led to a shortening of mRNA poly(A) tails, demonstrating the cellular function of PABPN1 in polyadenylation control in a mammalian cell. In addition, PABPN1 depletion caused nuclear accumulation of poly(A) RNA, revealing that PABPN1 is required for proper poly(A) RNA export from the nucleus. Together, these experiments demonstrate that PABPN1 plays an essential role in myoblast proliferation and differentiation, suggesting that it is required for muscle regeneration and maintenance in vivo.
Resumo:
The optimized δ-expansion is used to study vacuum polarization effects in the Walecka model. The optimized δ-expansion is a nonperturbative approach for field theoretic models which combines the techniques of perturbation theory and the variational principle. Vacuum effects on self-energies and the energy density of nuclear matter are studied up to script O sign(δ2). When exchange diagrams are neglected, the traditional relativistic Hartree approximation (RHA) results are exactly reproduced and, using the same set of parameters that saturate nuclear matter in the RHA, a new stable, tightly bound state at high density is found.
Resumo:
The models of translationally invariant infinite nuclear matter in the relativistic mean field models are very interesting and simple, since the nucleon can connect only to a constant vector and scalar meson field. Can one connect these to the complicated phase transitions of QCD? For an affirmative answer to this question, one must consider models where the coupling contstants to the scalar and vector fields depend on density in a nonlinear way, since as such the models are not explicitly chirally invariant. Once this is ensured, indeed one can derive a quark condensate indirectly from the energy density of nuclear matter which goes to zero at large density and temperature. The change to zero condensate indicates a smooth phase transition. © Springer-Verlag 1996.
Resumo:
The binding energy of nuclear matter including exchange and pionic effects is calculated in a quark-meson coupling model with massive constituent quarks. As in the case with elementary nucleons in QHD, exchange effects are repulsive. However, the coupling of the mesons directly to the quarks in the nucleons introduces a new effect on the exchange energies that provides an extra repulsive contribution to the binding energy. Pionic effects are not small. Implications of such effects on observables are discussed. © 1998 Published by Elsevier Science B.V. All rights reserved.
Resumo:
The mean field description of nuclear matter in the quark-meson coupling model is improved by the inclusion of exchange contributions (Fock terms). The inclusion of Fock terms allows us to explore the momentum dependence of meson-nucleon vertices and the role of pionic degrees of freedom in matter. It is found that the Fock terms maintain the previous predictions of the model for the in-medium properties of the nucleon and for the nuclear incompressibility. The Fock terms significantly increase the absolute values of the single-particle, four-component scalar and vector potentials, a feature that is relevant for the spin-orbit splitting in finite nuclei. © 1999 Elsevier Science B.V.
Resumo:
We formulate a quark-meson coupling model for nuclear matter using light front variables. We present results for saturation properties of nuclear matter and in-medium nucleon properties. We also calculate the distribution function of the plus momentum carried by nucleons in nuclear matter. Our model predicts that vector mesons carry only 7% of the fraction per nucleon of the total plus momentum of the system.