53 resultados para asteroids
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
A survey we conducted, and bring expressed in this text is a preliminary study on the shape of asteroids and allowed us to understand a little more the dynamics around these bodies, in order that the images we have of asteroids are the most irregular possible. In this work, the asteroid is modeled by the method of the polyhedron, which provides a very good accuracy of the irregular shape of the body. Through study of models for non-spherical gravitational potential bodies, implementation of computational algorithms and numerical simulations a preliminary analysis was performed in relation to the shape of asteroids 4179 Toutatis, 6489 Golevka, 2063 Bacchus, 1620 Geographos and 1998 ML14, as well as regions of stability instability, we compute the coefficients of the gravitational potential. The work not only enables expansion for the case of asteroids, but also for other non-spherical bodies, contributing to the development of targeted studies the origin and evolution of the solar system, and perhaps the origin of the earth, and new technologies for modeling and mapping of non-spherical bodies. The main results were obtained by analyzing the graphics format and planning of asteroids, which confirmed how these bodies are irregular and show how distribution of non-homogeneous mass. Observe the behavior of the curves of zero velocity and equipotential curves as well as their respective surfaces. Also, compute some values of the gravitational potential and the spherical harmonic coefficients of each object. Furthermore, we find possible equilibrium points of asteroids except 4179 Toutatis, and analyze its stability
Resumo:
In this work we have developed an apparatus in order to study the capture of asteroids by planets surrounded by a gas envelope during y-by, to do this we have brought an innovation by using a hydrodynamical gas. We began such project by studying particles trajectories with a code based on the analytical gas. After being used to this model we have started a process to elaborate a code which uses the gas in a numerical way. The hydrodynamical gas is described by equations which are not solved analytically. Therefore, it was used an algorithm able to model the gas by keeping all information of the gas in cells. Thus we have made a code to read such cell`s information and then to solve all calculations. Once this process is done, the program inform us all date about the simulated trajectories
Resumo:
Resonance capture is studied numerically in the three-body problem for arbitrary inclinations. Massless particles are set to drift from outside the 1: 5 resonance with a Jupiter-mass planet thereby encountering the web of the planet's diverse mean motion resonances. Randomly constructed samples explore parameter space for inclinations from 0 to 180 degrees with 5 degrees increments totalling nearly 6 x 10(5) numerical simulations. 30 resonances internal and external to the planet's location are monitored. We find that retrograde resonances are unexpectedly more efficient at capture than prograde resonances and that resonance order is not necessarily a good indicator of capture efficiency at arbitrary inclination. Capture probability drops significantly at moderate sample eccentricity for initial inclinations in the range [10 degrees,110 degrees]. Orbit inversion is possible for initially circular orbits with inclinations in the range [60 degrees,130 degrees]. Capture in the 1:1 co-orbital resonance occurs with great likelihood at large retrograde inclinations. The planet's orbital eccentricity, if larger than 0.1, reduces the capture probabilities through the action of the eccentric Kozai-Lidov mechanism. A capture asymmetry appears between inner and outer resonances as prograde orbits are preferentially trapped in inner resonances. The relative capture efficiency of retrograde resonance suggests that the dynamical lifetimes of Damocloids and Centaurs on retrograde orbits must be significantly larger than those on prograde orbits implying that the recently identified asteroids in retrograde resonance, 2006 BZ8, 2008 SO218, 2009 QY6 and 1999 LE31 may be among the oldest small bodies that wander between the outer giant planets.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
This work was developed from the study by Araujo, R.A.N. et al. Stability regions around the components of the triple system 2001 SN263. (Monthly Notices Of The Royal Astronomical Society, 2012, v. 423(4), 3058-3073 p.) where it was studied the stable and unstable regions system (2001 SN263), which is a triple asteroid system, and these are celestial orbiting our sun. Being close to the Earth is characterized as NEA (Near-Earth Asteroids), asteroids and which periodically approach the Earth's orbit, given that there is great interest in the study and exploitation of these objects, it is the key can carry features that contribute to better understand the process of formation of our solar system. Study the dynamics of bodies that govern those systems proves to be greatly attractive because of the mutual gravitational perturbation of bodies and also by external disturbances. Recently, NEA 2001 SN263 was chosen as a target of Aster mission where a probe is sent for this triple system, appearing therefore the need for obtaining information for characterizing stable regions internal and external to the system, with respect to the effects of radiation pressure. First, this study demonstrated that the integrator used showed satisfactory results of the orbital evolution of bodies in accordance with previous studies and also the characterization of stable and unstable regions brought similar results to the study by Araujo et al. (2012). From these results it was possible to carry out the implementation of the radiation pressure in the system in 2001 SN263, in a region close to the central body, where the simulations were carried out, which brought as a result that the regions before being characterized as stable in unstable true for small particles size from 1 to 5 micrometers. So the next orbital region to the central body and the ... ( Complete abstract click electronic access below)