124 resultados para antioxidants enzymes
Resumo:
An understanding of isoniazid (INH) drug resistance mechanism in Mycobacterium tuberculosis should provide significant insight for the development of newer anti-tubercular agents able to control INH-resistant tuberculosis (TB). The inhA-encoded 2-trans enoyl-acyl carrier protein reductase enzyme (InhA) has been shown through biochemical and genetic studies to be the primary target for INH. In agreement with these results, mutations in the inhA structural gene have been found in INH-resistant clinical isolates of M. tuberculosis, the causative agent of TB. In addition, the InhA mutants were shown to have higher dissociation constant values for NADH and lower values for the apparent first-order rate constant for INH inactivation as compared to wild-type InhA. Here, in trying to identify structural changes between wild-type and INH-resistant InhA enzymes, we have solved the crystal structures of wild-type and of S94A, I47T and I21V InhA proteins in complex with NADH to resolutions of, respectively, 2.3 angstrom, 2.2 angstrom, 2.0 angstrom, and 1.9 angstrom. The more prominent structural differences are located in, and appear to indirectly affect, the dinucleotide binding loop structure. Moreover, studies on pre-steady-state kinetics of NADH binding have been carried out. The results showed that the limiting rate constant values for NADH dissociation from the InhA-NADH binary complexes (k(off)) were eleven, five, and tenfold higher for, respectively, I21V, I47T and S94A INH-resistant mutants of InhA as compared to INH-sensitive wildtype InhA. Accordingly, these results are proposed to be able to account for the reduction in affinity for NADH for the INH-resistant InhA enzymes. (c) 2006 Elsevier Ltd. All rights reserved.
Resumo:
This study reports on the effects of growth temperature on the secretion and some properties of the xylanase and beta-xylosidase activities produced by a thermotolerant Aspergillus phoenicis. Marked differences were observed when the organism was grown on xylan-supplemented medium at 25 degreesC or 42 degreesC. Production of xylanolytic enzymes reached maximum levels after 72 h of growth at 42 degreesC; and levels were three- to five-fold higher than at 25 degreesC. Secretion of xylanase and beta-xylosidase was also strongly stimulated at the higher temperature. The optimal temperature was 85 degreesC for extracellular and 90 degreesC for intracellular beta-xylosidase activity, independent of the growth temperature. The optimum temperature for extracellular xylanase increased from 50 degreesC to 55 degreesC when the fungus was cultivated at 42 degreesC. At the higher temperature, the xylanolytic enzymes produced by A. phoenicis showed increased thermo stability, with changes in the profiles of pH optima. The chromatographic profiles were distinct when samples obtained from cultures grown at different temperatures were eluted from DEAE-cellulose and Biogel P-60 columns.
Resumo:
In this study, the influence of the addition of antioxidants in vivo on the fatty acid composition of the flesh of a freshwater fish known as pacu (Piaractus mesopotamicus) is verified. Four groups (one being the control group) of juvenile pacu were cultured on isocaloric and isoproteic diets. The lipid source was soybean oil and diets were added with either 100 ppm of alpha-tocopheryl acetate, or 100 ppm of BHT or 1.4 g of rosemary extract (Herbalox(R))/kg diet. The fatty acid composition of the lipids of the different groups was determined before and after irradiation at 2 and 3 kGy, respectively, for the evaluation of the protective effects of the different antioxidants. Similarly, thiobarbituric acid reactive substances (TBARS) were determined from irradiated and nonirradiated samples. The results showed that the use of antioxidants altered the fatty acid composition of the fillets. TEARS and irradiation confirmed their important role in protecting against lipid oxidation. Among all the antioxidants used, tocopherol was the most efficient, as shown by the highest percentage of polyunsaturated fatty acids (PUFA), by the lowest values of TEARS and by the analyses of the individual fatty acid levels at different irradiation doses. Significant statistical differences were observed only in 17% of the fatty acids in the fillets of the groups. (C) 1999 Elsevier B.V. Ltd. All rights reserved.
Resumo:
The structural complexity of the nitrogen sources strongly affects biomass production and secretion of hydrolytic enzymes in filamentous fungi. Fusarium oxysporum and Aspergillus nidulans were grown in media containing glucose or starch, and supplemented with a nitrogen source varying from a single ammonium salt (ammonium sulfate) to free amino acids (casamino acids), peptides (peptone) and protein (gelatin). In glucose, when the initial pH was adjusted to 5.0, for both microorganisms, higher biomass production occurred upon supplementation with a nitrogen source in the peptide form (peptone and gelatin). With a close to neutrality pH, biomass accumulation was lower only in the presence of the ammonium salt. When grown in starch, biomass accumulation and secretion of hydrolytic enzymes (amylolytic and proteolytic) by Fusarium also depended on the nature of the nitrogen supplement and the pH. When the initial pH was adjusted to 5.0, higher growth and higher amylolytic activities were detected in the media supplemented with peptone, gelatin and casamino acids. However, at pH 7.0, higher biomass accumulation and higher amylolytic activities were observed upon supplementation with peptone or gelatin. Ammonium sulfate and casamino acids induced a lower production of biomass, and a different level of amylolytic enzyme secretion: high in ammonium sulfate and low in casamino acids. Secretion of proteolytic activity was always higher in the media supplemented with peptone and gelatin. Aspergillus, when grown in starch, was not as dependent as Fusarium on the nature of nitrogen source or the pH. The results described in this work indicate that the metabolism of fungi is regulated not only by pH, but also by the level of structural complexity of the nitrogen source in correlation to the carbon source.
Resumo:
The electrochemical oxidation of caffeic, chlorogenic, sinapic, ferulic and p-coumaric acids was investigated by cyclic voltammetry on acetate buffer pH 5.6 on glassy carbon electrode and modified glassy carbon electrode. According to their voltammetric behavior, the antioxidant activity of these phenolic acids was evaluated and the results pointed to the following sequence: caffeic acid (E-a = +0.31 V) > chlorogenic acid (+ 0.38 V) > sinapic acid (+ 0.45 V) > ferulic acid (+ 0.53 V) >p-coumaric acid (+ 0.73 V). The results were confirmed by DPPH test, which evidenced the strongest antiradical activity for compounds possessing the cathecol moiety (caffeic and chlorogenic acids). Linear calibration graphs were obtained for their determination at concentrations from 1 x 10(-4) to 1 x 10(-3) mol L-1. The method was applied to orange juice. Selectivity was illustrated by the analysis of caffeic and chlorogenic acids electrodeposited on a glassy carbon electrode previously modified by electrochemical activation in the presence of ascorbic acid. (C) 2003 Elsevier B.V. All rights reserved.
Resumo:
Carotenoids are natural pigments which are synthesized by plants and are responsible for the bright colors of various fruits and vegetables. There are several dozen carotenoids in the foods that we eat, and most of these carotenoids have antioxidant activity. beta-carotene has been best studied since, in most countries it is the most common carotenoid in fruits and vegetables. However, in the U.S., lycopene from tomatoes now is consumed in approximately the same amount as beta-carotene. Antioxidants (including carotenoids) have been studied for their ability to prevent chronic disease, beta-carotene and others carotenoids have antioxidant properties in vitro and in animal models. Mixtures of carotenoids or associations with others antioxidants (e.g. vitamin E) can increase their activity against free radicals. The use of animals models for studying carotenoids is limited since most of the animals do not absorb or metabolize carotenoids similarly to humans.Epidemiologic studies have shown an inverse relationship between presence of various cancers and dietary carotenoids or blood carotenoid levels. However, three out of four intervention trials using high dose beta-carotene supplements did not show protective effects against cancer or cardiovascular disease. Rather, the high risk population (smokers and asbestos workers) in these intervention trials showed an increase in cancer and angina cases. It appears that carotenoids (including beta-carotene) can promote health when taken at dietary levels, but may have adverse effects when taken in high dose by subjects who smoke or who have been exposed to asbestos. It will be the task of ongoing and future studies to define the populations that can benefit from carotenoids and to define the proper doses, lengths of treatment, and whether mixtures, lather than single carotenoids (e.g. beta-carotene) are more advantageous.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)