182 resultados para anharmonic oscillator
Resumo:
This work considers the vibrating system that consists of a snap-through truss absorber coupled to an oscillator under excitation of an electric motor with an eccentricity and limited power, characterizing a non-ideal oscillator. It is aimed to use the non-linearity and quasi-zero stiffness of absorber (snap-through truss absorber) to obtain a significantly attenuation the jump phenomenon. There is also an interest to exhibit the reduction of Sommerfeld effect, to confirm the saturation phenomenon occurrence and show the power transfer in a non-linear structure, evidencing the pumping energy. As shown by simulations in this work, this absorber allows the energy pumping before and during the jump phenomenon, decreasing the higher amplitudes of considered system. Additionally, the occurrence of saturation phenomenon due use of snap-through truss absorber is verified. The analysis of parameter uncertainties was introduced. Sensitivity of system with parametric errors demonstrated a trustable system. © IMechE 2012.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
This paper presents an investigation into some practical issues that may be present in a real experiment, when trying to validate the theoretical frequency response curve of a two degree-of-freedom nonlinear system consisting of coupled linear and nonlinear oscillators. Some specific features, such as detached resonance curves, have been theoretically predicted in multi degree-of-freedom nonlinear oscillators, when subject to harmonic excitation, and the system parameters have been shown to be fundamental in achieving such features. When based on a simplified model, approximate analytical expression for the frequency response curves may be derived, which may be validated by the numerical solutions. In a real experiment, however, the practical achievability of such features was previously shown to be greatly affected by small disturbances induced by gravity and inertia, which led to some solutions becoming unstable which had been predicted to be stable. In this work a practical system configuration is proposed where such effects are reduced so that the previous limitations are overcome. A virtual experiment is carried out where a detailed multi-body model of the oscillator is assembled and the effects on the system response are investigated.
Resumo:
A variational analysis of the spiked harmonic oscillator Hamiltonian operator - d2/dx2 + x2 + l(l + 1)/x2 + λ|x| -α, where α is a real positive parameter, is reported in this work. The formalism makes use of the functional space spanned by the solutions of the Schrödinger equation for the linear harmonic oscillator Hamiltonian supplemented by a Dirichlet boundary condition, and a standard procedure for diagonalizing symmetric matrices. The eigenvalues obtained by increasing the dimension of the basis set provide accurate approximations for the ground state energy of the model system, valid for positive and relatively large values of the coupling parameter λ. Additionally, a large coupling perturbative expansion is carried out and the contributions up to fourth-order to the ground state energy are explicitly evaluated. Numerical results are compared for the special case α = 5/2. © 1989 American Institute of Physics.
Resumo:
Using the factorisation method in supersymmetric quantum mechanics the author determines new potentials from the Morse oscillator. This method is applied although the ladder operators are not used.
Resumo:
Using an algebraic technique related to the SO (2, 1) group we construct the Green function for the potential ar2 + b(r sin θ)-2 + c(r cos θ)-2 + dr2 sin2θ + er2 cos2θ. The energy spectrum and the normalized wave functions are also obtained. © 1990.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
We present a new procedure to construct the one-dimensional non-Hermitian imaginary potential with a real energy spectrum in the context of the position-dependent effective mass Dirac equation with the vector-coupling scheme in 1 + 1 dimensions. In the first example, we consider a case for which the mass distribution combines linear and inversely linear forms, the Dirac problem with a PT-symmetric potential is mapped into the exactly solvable Schrodinger-like equation problem with the isotonic oscillator by using the local scaling of the wavefunction. In the second example, we take a mass distribution with smooth step shape, the Dirac problem with a non-PT-symmetric imaginary potential is mapped into the exactly solvable Schrodinger-like equation problem with the Rosen-Morse potential. The real relativistic energy levels and corresponding wavefunctions for the bound states are obtained in terms of the supersymmetric quantum mechanics approach and the function analysis method.
Resumo:
We present a new method to construct the exactly solvable PT-symmetric potentials within the framework of the position-dependent effective mass Dirac equation with the vector potential coupling scheme in 1 + 1 dimensions. In order to illustrate the procedure, we produce three PT-symmetric potentials as examples, which are PT-symmetric harmonic oscillator-like potential, PT-symmetric potential with the form of a linear potential plus an inversely linear potential, and PT-symmetric kink-like potential, respectively. The real relativistic energy levels and corresponding spinor components for the bound states are obtained by using the basic concepts of the supersymmetric quantum mechanics formalism and function analysis method. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
The Duffin-Kemmer-Petiau (DKP) equation, in the scalar sector of the theory and with a linear nominimal vector potential, is mapped into the nonrelativistic harmonic oscillator problem. The behavior of the solutions for this sort of vector DKP oscillator is discussed in detail.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)