152 resultados para angiotensin analogs


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Adriamycin, a commonly used antineoplastic antibiotic, induces glomerular lesions in rats, resulting in persistent proteinuria and glomerulosclerosis. We studied the effects of dietary protein and of an angiotensin I converting enzyme inhibitor on the progression of this nephropathy and the evolution of the histological lesions, as well as mesangial macromolecule flow. Adriamycin nephropathy was induced by injecting a single iv dose of adriamycin (3 mg/kg body weight) into the tail vein of male Wistar rats (weight, 180-200 g). In Experiment I animals with adriamycin-induced nephropathy were fed diets containing 6% (Low-Protein Diet Group = LPDG), 20% (Normal-Protein Diet Group = NPDG) and 40% (High-protein Diet Group = HPDG) protein and were observed for 30 weeks. In Experiment II the rats with adriamycin nephropathy were divided into 2 groups: ADR, that received adriamycin alone, and ADR-ENA, that received adriamycin plus enalapril, an angiotensin I converting enzyme inhibitor. The animals were sacrificed after a 24-week observation period. Six hours before sacrifice the animals were injected with I-131-ferritin and the amount of I-131-ferritin in the glomeruli was measured. In Experiment III, renal histology was performed 4, 8 and 16 weeks after adriamycin injection. At the end of Experiment I the tubulointerstitial lesion index was 2 for LPDG, 8 for NPDG, and 7.5 for HPDG (P<0.05); the frequency of glomerulosclerosis was 19 +/- 6.1% in LPDG, 42.6 +/- 6% in NPDG, and 54 +/- 9% in HPDG (P<0.05); and proteinuria was 61.1 +/- 25 mg/24 h in LPDG, 218.7 +/- 27.5 mg/24 h in NPDG, and 324.5 +/- 64.8 mg/24 h in HPDG (P<0.05). In Experiment II, at sacrifice, 24-h proteinuria was 189 +/- 16.1 mg in ADR, and 216 +/- 26.1 mg in ADR-ENA (P>0.05); the tubulointerstitial lesion index was 5 for ADR, and 5 for ADR-ENA (P>0.05); the frequency of glomerulosclerosis was 40 +/- 5.2% in ADR and 44 +/- 6% in ADR-ENA (P>0.05); the amount of I-131-ferritin in the mesangium was 214.26 +/- 22.71 cpm/mg protein in ADR and 253.77 +/- 69.72 cpm/mg protein in ADR-ENA (P>0.05). In Experiment III, sequential histological analysis revealed an acute tubulointerstitial cellular infiltrate at week 4, which was decreased at week 8. Tubular casts and dilatation were first seen at week 8 and increased at week 16 when few glomerular lesions were found. The results suggest that the tubulointerstitial lesions may play a role in the development of glomerulosclerosis in adriamycin-induced nephropathy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We investigated the effects of estrogen on sodium intake and excretion induced by angiotensin II (ANG II), atrial natriuretic peptide (ANP) or ANG II plus ANP injected into the median preoptic nucleus (MnPO). Female Holtzman rats weighing 250-300 g were used. Sodium ingestion and excretion 120 min after the injection of 0.5 mu l of 0.15 M NaCl into the MnPO were 0.3 +/- 0.1 ml (N = 12) and 29 +/- 7 mu Eq in intact rats, 0.5 +/- 0.2 ml (N = 10) and 27 +/- 6 mu Eq in ovariectomized rats, and 0.2 +/- 0.08 (N = 11) and 38 +/- 8 mu Eq in estrogen-treated ovariectomized (50 mu g/day for 21 days) rats, respectively. ANG II (21 mu M) injection in intact, ovariectomized, and estrogen-treated ovariectomized rats increased sodium intake (3.8 +/- 0.4, 1.8 +/- 0.3 and 1.2 +/- 0.2 ml/120 min, respectively) (N = 11) and increased sodium excretion (166 +/- 18, 82 +/- 22 and 86 +/- 12 mu Eq/120 min, respectively) (N = 11). ANP (65 mu M) injection in intact (N = 11), ovariectomized(N = 10)and estrogen-treated ovariectomized (N = 10) rats increased sodium intake (1.4 +/- 0.2, 1.8 +/- 0.3, and 1.7 +/- 0.3 ml/120 min, respectively) and sodium excretion (178 +/- 19, 187 +/- 9, and 232 +/- 29 mu Eq/120 min, respectively). Concomitant injection of ANG II and ANP into the MnPO of intact (N = 12), ovariectomized (N = 10) and estrogentreated ovariectomized (N = 10) rats caused smaller effects than those produced by each peptide given alone: 1.3 +/- 0.2, 0.9 +/- 0.2 and 0.3 +/- 0.1 ml/120 min for sodium intake, respectively, and 86 +/- 9, 58 +/- 7, and 22 +/- 4 mu Eq/120 min for sodium excretion, respectively. Taken together, these results demonstrate that there is an antagonistic interaction of ANP and ANG II on sodium intake and excretion, and that reproductive hormones affect this interaction.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study investigated the effects of bilateral injections of the local anesthetic, lidocaine, into the lateral parabrachial nucleus (LPBN) on the dipsogenic and presser responses induced by intracerebroventricular (i.c.v.) injection of angiotensin II (ANG II). Centrally injected ANG II (50 ng/l mu l) induced water intake (10.2 +/- 0.8 ml/h) and presser responses (22 +/- 1 mmHg). Prior bilateral injection of 10% lidocaine (200 nl) into the LPBN increased the water intake (14.2 +/- 1.4 ml/h), but did not change the presser response (17 +/- 1 mmHg) to i.c.v. ANG II. Lidocaine alone injected into the LPBN also induced a presser response (23 +/- 3 mmHg). These results showing that bilateral LPBN injection of lidocaine increase water intake induced by i.c.v. ANG II are consistent with electrolytic and neurotoxic lesion studies and suggest that the LPBN is associated with inhibitory mechanisms controlling water intake induced by ANG II. These results also provide evidence that it is feasible to reversibly anesthetize this brain area to facilitate fluid-related ingestive behavior.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The circumventricular structures of the central nervous system and nitric oxide are involved in arterial blood pressure control, and general anesthesia may stimulate the central renin-angiotensin system. We therefore investigated the central role of angiotensin 11 and nitric oxide on the regulation of systemic arterial blood pressure in conscious and anesthetized rats. METHODS: Rats with stainless steel cannulae implanted into their lateral ventricle were studied. We injected the AT(1) and AT(2) angiotensin 11 receptor antagonists, losartan and PD123319, L-NAME, 7-nitroindazole (nitric oxide synthetase inhibitors), and FK409 (nitric oxide donor agent) into the lateral ventricles. Mean arterial blood pressure (MAP) was recorded in conscious and zoletil-anesthetized rats. RESULTS: Mean +/- (SEM) baseline MAP was 117.5 +/- 2 mm Hg. Angiotensin II injected into the brain lateral ventricle increased MAP from 136.5 +/- 2 min Hg to 138.5 +/- 4 mm Hg (Delta 16 +/- 3 mm Hg to Delta 21 +/- 3 mm Hg) for all experimental groups versus control from 116 +/- 2 mm Hg to 120 +/- 3 mm Hg (Delta 3 +/- 1 mm Hg to A5 +/- 2 mm Hg) (P < 0.05). L-NAME or 7-nitroindazole enhanced the angiotensin II pressor effect (P < 0.05). Prior injection of losartan and PD123319 decreased the angiotensin 11 pressor effect and the enhancement effect of L-NAME and 7-nitroindazole (P < 0.05). Zoletil anesthesia did not interfere with the effects of angiotensin 11, AT,, AT2 antagonists, or nitric oxide synthetase inhibitors. CONCLUSIONS: Endogenous nitric oxide functions tonically as a central inhibitory modulator of the angiotensinergic system. AT, and AT2 receptors influence the angiotensin 11 central control of arterial blood pressure. Zoletil anesthesia did not interfere with these effects. (Anesth Analg 2007;105:1293-7)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study investigated the effects of bilateral injections of serotonergic receptor ligands into the lateral parabrachial nucleus (LPBN) on the presser and dipsogenic responses induced by intracerebroventricular (icv) injection of angiotensin II (ANG II). Rats with stainless steel cannulas implanted bilaterally into the LPBN and into the left lateral ventricle were used to study icy ANG II-induced water intake and presser responses. Pretreatment with the serotonergic 5-HT1/5-HT2 receptor antagonist methysergide (1-8 mu g/200 nl) bilaterally injected into the LPBN increased the water intake induced by icv ANG II (50 ng/mu l) administered via the lateral ventricle, but pretreatment with methysergide (4 mu g/200 nl) did not change the presser response produced by icy ANG II. After bilateral injection of either serotonin (5-HT, 5 mu g/200 nl) or the serotonergic 5-HT2a/5-HT2c receptor agonist (+/-)-2,5-dimetoxy-4-iodoamphetamine hydrochloride (DOI; 0.5-10 mu g/200 nl) into the LPBN, the water intake induced by ANG II was significantly reduced. These results are consistent with other observations indicating that the LPBN is associated with inhibitory mechanisms controlling water intake induced by ANG II treatment and suggest that serotonergic pathways may be involved in this effect.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Angiotensin II (ANG II) administered centrally produces drinking by acting on subtype 1 ANG II (AT1) receptors, Carbachol, a cholinergic receptor agonist, also induces drinking behavior by a central action. In the present study we determined whether the response to carbachol also involves AT1 receptors. Male Holtzman rats (250-300 g) with stainless steel cannula implanted into the lateral ventricle (LV) were used. Water intake after injection of 0.15 M NaCl (1.0 mu l) into the LV was 0.2 +/- 0.01 ml/h (N = 8). The AT1 receptor antagonist DUP-753 (50 nmol/mu l) injected into the LV reduced water intake induced by ANG II (10 nmol/mu l) from 9.2 +/- 1.4 to 0.4 +/- 0.1 ml/h (N = 8), and water intake induced by carbachol (2 nmol/mu l) from 9.8 +/- 1.4 ml/h to 3.7 +/- 0.8 ml/h (N = 8), These results suggest that AT1 receptors play a role in the drinking behavior observed after central cholinergic stimulation in rats.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We investigated the effect of losartan (DUP-753) on the dipsogenic responses produced by intracerebroventricular (icv) injection of noradrenaline (40 nmol/mu l) and angiotensin II (ANG II) (2 ng/mu l) in male Holtzman rats weighing 250-300 g. The effect of DUP-753 was also studied in animals submitted to water deprivation for 30 h. After control injections of isotonic saline (0.15 M NaCl, 1 mu l) into the lateral ventricle (LV) the water intake was 0.2 +/- 0.01 ml/h. DUP-753 (50 nmol/mu l) when injected alone into the LV of satiated animals had no significant effect on drinking (0.4 +/- 0.02 ml/h) (N = 8). DUP-753 (50 nmol/mu l) injected into the LV prior to noradrenaline reduced the water intake from 2.4 +/- 0.8 to 0.8 +/- 0.2 ml/h (N = 8). The water intake induced by injection of ANG II and water deprivation was also reduced from 9.2 +/- 1.4 and 12.7 +/- 1.4 ml/h to 0.8 +/- 0.2 and 1.7 +/- 0.3 ml/h (N = 6 and N = 8), respectively. These data indicate a correlation between noradrenergic pathways and angiotensinergic receptors and lead us to conclude that noradrenaline-induced water intake may be due to the release of ANG II by the brain. The finding that water intake was reduced by DUP-753 in water-deprived animals suggests that dehydration releases ANG II, and that AT(1) receptors of the brain play an important role in the regulation of water intake induced by deprivation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Adult male rats (n = 5-7 per group) were water deprived for 24 h with only food available. Then they had access to water for 2 h. At the end of the 2 h, 1.5% NaCl was offered to the animals and the intake was measured for another 2 h. The rats drank an average of 9.8 +/- 3.0 ml/120 min of 1.5% NaCl; water intake during this time was negligible (not more than 1.0 ml/120 min). Captopril injected IP at the doses of 12 and 24 mg/kg induced 60-90% inhibition of the intake. Losartan or PD123319 injected ICV induced 50-80% inhibition of the intake. Losartan (80 nmol) inhibited the intake at a lower dose than PD123319 (160 nmol). Neither losartan nor PD123319 inhibited 10% sucrose intake. The inhibition of 1.5% NaCl intake was not related to alterations in arterial pressure. The results show that the antagonism of the renin-angiotensin system inhibits the 1.5% NaCl intake induced by water deprivation. The inhibition induced by the angiotensin II antagonists suggest that this peptide is important for the control of salt intake induced by water deprivation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The present experiments were conducted to investigate the role of the alpha (1A)-, alpha (1B), beta (1),- and beta (2)-adrenoceptors of the lateral hypothalamus (LH) on the water and salt intake responses elicited by subfornical organ (SFO) injection of angiotensin II (ANG II) in rats. 5-methylurapidil (an alpha (1A)-adrenergic antagonist), cyclazosin (an alpha (1B)-adrenergic antagonist) and ICI-118,551 (a beta (2)-adrenergic antagonist) injected into the LH produced a dose-dependent reduction, whereas efaroxan (an alpha (2)-antagonist) increased the water intake induced by administration of ANG II into the SFO. These data show that injection of 5-methylurapidil into the LH prior to ANG II into the SFO increased the water and sodium intake induced by the injection of ANG II. The present data also show that atenolol (a beta (1)-adrenergic antagonist), ICI-118,551, cyclazosin, or efaroxan injected into the LH reduced in a dose-dependent manner the water and sodium intake to angiotensinergic activation of SFO. Thus, the alpha (1)- and beta -adrenoceptors of the LH are possibly involved with central mechanisms dependent on ANG II and SFO that control water and sodium intake. (C) 2000 Elsevier B.V. B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study investigated the roles of serotonin (5-HT) receptors in the lateral parabrachial nucleus (LPBN), and brain angiotensin type 1 (AT(1)) receptors in the intake of 0.3 M NaCl and water induced by angiotensin II (ANG II). Rats were implanted with stainless steel cannulas for injections into tho subfornical organ (SFO) and into the LPBN. Bilateral LPBN pretreatment with the nonselective serotonergic 5-HT1/5-HT2 receptor antagonist methysergide (4 mu g/200 nl) markedly enhanced 0.3 M NaCl intake induced by injections of ANG II (20 ng/200 nl) into the SFO. Pretreatment of the SFO with the AT(1) receptor antagonist losartan (1 mu g/200 nl) blocked the intake of 0.3 M NaCl induced by ANG II in combination with LPBN methysergide injections. These results suggest that serotonergic mechanisms associated with the LPBN inhibit the expression of salt appetite induced by ANG II injections into Ihs SFO. In addition, the results indicate that the enhanced NaCl intake generated by central administration of ANG II in the presence of LPBN 5-HT blockade is mediated bg brain ATI receptors.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

1. Angiotensin (Ang)II is involved in responses to hypovolaemia, such as sodium appetite and increase in blood pressure, Target areas subserving these responses for AngII include the cardiovascular system in the periphery and the circumventricular organs in the brain.2. Conflicting data have been reported for the role of systemic versus brain AngII in the mediation of sodium appetite.3. The role for systemic AngII and systemic AngII receptors in the control of blood pressure in hypovolaemia is well established. In contrast with systemic injections, i.c.v injections of AngII non-peptide AT(1) and AT(2) receptor antagonists, such as losartan and PD123319, do not reduce arterial pressure in sodium-depleted (furosemide injection plus removal of ambient sodium for 24 h) rats. Thus, brain AngII receptors are likely not important for cardiovascular responses to hypovolaemia induced by sodium depletion.4. Intracerebroventricular injections of losartan or PD 123319 increase arterial pressure when injected at relatively high doses. This hypertensive effect is unlikely to be an agonist effect on brain AngII receptors, Increases in arterial pressure produced by i.c.v, losartan are attenuated by lesions of the tissue surrounding the anterior third ventricle (AV3V). The hypertensive effect of i.c.v, AngII is abolished by lesions of the AV3V.5. Hypertension induced by AngII receptor antagonists is consistent with hypotension induced by AngII acting in the brain, However, the full physiological significance of this hypotensive effect mediated by brain AngII receptors remains to be determined.