62 resultados para air particulate material


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study compared the effect of physicochemical surface conditioning methods on the adhesion of bis-GMA-based resin cement to particulate filler composite (PFC) used for indirect dental restorations. PFC blocks (N (block)=54, n (block)=9 per group) were polymerized and randomly subjected to one of the following surface conditioning methods: a) No conditioning (Control-C), b) Hydrofluoric acid (HF)etching for 60s (AE60), c) HF for 90s (AE90), d) HF for 120s (AE120), e) HF for 180s (AE180), and f) air-abrasion with 30 mu m silica-coated alumina particles (AB). The conditioned surfaces were silanized with an MPS silane, and an adhesive resin was applied. Resin composite blocks were bonded to PFC using resin cement and photo-polymerized. PFC-cement-resin composite blocks were cut under coolant water to obtain bar specimens (1mmx0.8mm). Microtensile bond strength test (mu TBS)was performed in a universal testing machine (1mm/min). After debonding, failure modes were classified using stereomicroscopy. Surface characterization was performed on a set of separate specimen surfaces using Scanning Electron Microscopy (SEM), X-Ray Dispersive Spectroscopy (XDS), X-Ray Photoelectron Spectroscopy (XPS), and Fourier Transform-Raman Spectroscopy (FT-RS). Mean mu TBS (MPa) of C (35.6 +/- 4.9) was significantly lower than those of other groups (40.2 +/- 5.6-47.4 +/- 6.1) (p<0.05). The highest mu TBS was obtained in Group AB (47.4 +/- 6.1). Prolonged duration of HF etching increased the results (AE180: 41.9 +/- 7), but was not significantly different than that of AB (p>0.05). Failure types were predominantly cohesive in PFC (34 out of 54) followed by cohesive failure in the cement (16 out of 54). Degree of conversion (DC) of the PFC was 63 +/- 10%. SEM analysis showed increased irregularities on PFC surfaces with the increased etching time. Chemical surface analyses with XPS and FT-RS indicated 11-70% silane on the PFC surfaces that contributed to improved bond strength compared to Group C that presented 5% silane, which seemed to be a threshold. Group AB displayed 83% SiO2 and 17% silane on the surfaces.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this study, the physicochemical characteristics of calcium phosphate based bioactive ceramics of different compositions and blends presenting similar micro/nanoporosity and micrometer scale surface texture were characterized and evaluated in an in vivo model. Prior to the animal experiment, the porosity, surface area, particle size distribution, phase quantification, and dissolution of the materials tested were evaluated. The bone regenerative properties of the materials were evaluated using a rabbit calvaria model. After 2, 4, and 8 weeks, the animals were sacrificed and all samples were subjected to histologic observation and histomorphometric analysis. The material characterization showed that all materials tested presented variation in particle size, porosity and composition with different degrees of HA/TCP/lower stoichiometry phase ratios. Histologically, the calvarial defects presented temporal bone filling suggesting that all material groups were biocompatible and osteoconductive. Among the different materials tested, there were significant differences found in the amount of bone formation as a function of time. At 8 weeks, the micro/nanoporous material presenting similar to 55,TCP:45%,HA composition ratio presented higher amounts of new bone regeneration relative to other blends and a decrease in the amount of soft tissue infiltration. (C) 2014 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The use of biomass as an energy source has been increasing in Brazil, with emphasis on the use of wood biomass, such as bark, wood chips and sawdust, that after receiving the appropriate treatment can be used in burners for power generation. However, from this burning are emitted fine particles known as particulate matter and a wide range of toxic organic and inorganic components in the form of gases that contribute greatly to air pollution and global warming, affecting human health, the environment and climate. The objective of this project was the quantification of gaseous and particulate, using and evaluating the equipment DR4000 ( Dataram 4 ) sampling of particulates smaller than 2.5μm and EUROTRON ( Ecoline 4000 ) when sampling gaseous pollutants, emitted from the burning of biomass in real time in the firing burner to a chimney attached biomass . We note that there are no specific rules that establish emission limits for particulate matter with diameter less than 2.5μm that are most harmful to human health and the highest concentrations reached about 800000μg/m3, for smaller diameters. It is noticeable the need for sampling of pollutants especially in industries that use biomass to fuel that could be implanted emission control equipment

Relevância:

30.00% 30.00%

Publicador:

Resumo:

It is clear today the ever-accelerating search for new fuels that will eventually replace those that will survive in our society, which are fossil fuels. For this reason, a fuel used since the dawn of humanity and much studied since then, considered the generator of clean, renewable energy, can earn more and more space in the power generation sector, which is biomass. We performed two experiments with two different types of biomass, one from the Amazon rainforest and other pine and eucalyptus as waste from the sawmill UNESP Itapeva. In the first experiment, conducted at the Laboratory of Combustion and Propulsion INPE Cachoeira Paulista were conducted three tests in a chimney with a fan creating forced ventilation, where the biomass was burned and deposited on a support beneath the hood. In the second experiment was conducted to analyze the emission of particulate matter using biomass (waste) from the sawmill on the campus of UNESP experimental Itapeva the burning of it in a burner for heating water for a wood oven. In these experiments we used a particle called DATARAM4 sampler that is capable of sampling both outdoors and inside of pipelines, which is the focus of this work. With this equipment it was possible to measure the concentration of particulate matter in all the firings as above, and compare them to levels acceptable in the current law, always trying to analyze the so-called fine particles, which are those with diameters less than 2.5 μm. Using data obtained from the equipment was also possible to evaluate the diametral distribution of particulate matter in question, and verify which phases of the flares in the concentration and the diameters of the particles are the most critical. In this work we concluded that in all firings conducted concentrations of particulate matter were higher than that allowed by the law, and the diameters were found that are more harmful to human health

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Our twenty-first century society and the rhythm of life and work we have to face in our daily routine compel us to spend most of our lifetime in closed environments, in our houses, educational institutions, hospitals, airports, amongst as many others. The study of the air quality in internal environments (IAQ) is very important for monitoring people’s health effects and their environmental comfort in these locations. One essential parameter to analyze this measure is to evaluate the concentration of dispersed particulates in the air, specially focusing on those thinner particles (below the diameter of 2,5 μm), they can pose serious risks for human being because they can remain in the lungs, penetrate through the pores of our skin, amongst other harmful effects on human’s health. In this work the air quality inside the public library Profª Josina Vasques Ferrari and at Unesp public state library was evaluated, both located in Itapeva, as well as a third one, inside the Communitarian Library of the Federal University in Carlos (UFSCar) from march to may in 2012. In those environments it was analyzed if the concentration of particulates pose any real treat to the users. The equipment used for particle sampling in real time was DataRam 4 (Model DR 4000). The results given for those concentrations of particulates in both internal and external environments revealed figures within the safe standard established by the WHO (World Health Organization), from 25 to μg/m³, the only exception occurred on the fifth floor of the UFSCar library, where the average for concentration stayed at 25,30 of μg/m³

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Air pollution is an environmental issue worldwide and frequently cause negative effects on population health and ecosystems on cities. The relationship between climate and atmospheric pollution can be used as a surrogate to the intensity of air pollution. The present and quantity of some gases can be used as indicators to air quality: particulate matter (PM), sulfur dioxide (SO2), carbon monoxide (CO), ozone (O3), and nitrogen dioxide (NO2). Among those gases, CO has its major source within the cities, where automobiles are the main emitter. But measure pollutant concentration are challenging, sometimes because the lack of good equipments due to high costs and of the large variability of models that varies in precision, way of measure and distribution of sellers. Modeling are useful when there are an intend to evaluate air pollution, its sources and evaluate scenarios. This work aims to use CAL3QHCR model developed by the U.S Environmental Protection Agency (EPA) to generate predictive surfaces of CO concentration distribution on a site within Campinas city, located in São Paulo state, Brazil. CAL3QHCR model use data urban automobile circulation to generate spatial results for CO distribution. We observed that the pollution concentration was lower on our modeling than the concentrations measured by Companhia Ambiental do Estado de São Paulo (CETESB), the main environmental company on the São Paulo state. Also the correlation between average estimates of our model and the measure by CETESB was weak, indicating that the model used on this study need to be or better parameterized, or the scale we measured of CO emissions need to be rescaled. Although the model failed to correlate to CETESB data, maybe one that explore the estimated emissions distributed within the sites to understand spatial distributions of CO on the regions. Also, the generated information can also be used to other studies, and come to be useful to explain heat island

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Pós-graduação em Engenharia Mecânica - FEG

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Abstract A fuzzy linguistic model based on the Mamdani method with input variables, particulate matter, sulfur dioxide, temperature and wind obtained from CETESB with two membership functions each was built to predict the average hospitalization time due to cardiovascular diseases related to exposure to air pollutants in São José dos Campos in the State of São Paulo in 2009. The output variable is the average length of hospitalization obtained from DATASUS with six membership functions. The average time given by the model was compared to actual data using lags of 0 to 4 days. This model was built using the Matlab v. 7.5 fuzzy toolbox. Its accuracy was assessed with the ROC curve. Hospitalizations with a mean time of 7.9 days (SD = 4.9) were recorded in 1119 cases. The data provided revealed a significant correlation with the actual data according to the lags of 0 to 4 days. The pollutant that showed the greatest accuracy was sulfur dioxide. This model can be used as the basis of a specialized system to assist the city health authority in assessing the risk of hospitalizations due to air pollutants.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)