55 resultados para agricultural traffic
Resumo:
Agrarian reform has long been an acute issue in Brazil, where the distribution of cultivable land is extremely unequal. The Land Statute adopted by the military in 1964 constituted a genuine reform programme, which, however, was never implemented as the government chose to modernize agriculture and expand cultivated areas. This has prevented the poorest from having access to the land.-from English summary
Resumo:
The task of controlling urban traffic requires flexibility, adaptability and handling uncertain information spread through the intersection network. The use of fuzzy sets concepts convey these characteristics to improve system performance. This paper reviews a distributed traffic control system built upon a fuzzy distributed architecture previously developed by the authors. The emphasis of the paper is on the application of the system to control part of Campinas downtown area. Simulation experiments considering several traffic scenarios were performed to verify the capabilities of the system in controlling a set of coupled intersections. The performance of the proposed system is compared with conventional traffic control strategies under the same scenarios. The results obtained show that the distributed traffic control system outperforms conventional systems as far as average queues, average delay and maximum delay measures are concerned.
Resumo:
Little cicadas are homopteran insect pests of sugarcane plantations. As these insects suck out the sap from the leaf parenchyma, they inoculate a toxic saliva that damages the plant vessels, thus promoting the loss of glucose by the affected plant. The morphological and histological analyses of the salivary glands of the little cicada Mahanarva posticata, revealed that these glands are formed by 2 portions: one portion comprises a group of acini and has been denominated as the principal gland; the second portion is filamentous in nature and has been denominated as the accessory gland; it is formed by very long and fine filaments. The acinous portion of the gland can be subdivided into 2 lobes: an anterior lobe formed by 3 lobules (I, II, III), and a posterior lobe formed by lobule IV and the excretory duct. Histologically, the salivary glands showed that the filaments are empty sutructures composed by several internal channels with secretion granules being observed in the cytoplasm of the cells of the secretory filaments. Lobules I and II of the principal gland are characterized by being highly basophilic and for accumulating a large amount of secretion in both the cytoplasm of the cells and inside secretion vesicles. Histochemically, we verified that the secretion produced by these glands is lipidic and protein in nature, with the production of polysaccharides being very low. The differences in stain and appearance of the different regions of the salivary gland lead us to believe that the final glandular product is lipoproteic in nature.
Resumo:
The effects of metal bioleaching on nutrient solubilization, especially nitrogen and phosphorous, from anaerobically-digested sewage sludge were investigated in this work. The assessment of the sanitary quality of the anaerobic sludge after bioleaching was also carried out by enumerating indicator (total coliforms, fecal coliforms, and fecal streptococci) and total heterotrophic bacteria. The experiments of bioleaching were performed using indigenous sulphur-oxidizing bacteria (Thiobacillus spp.) as inoculum and samples of anaerobically-digested sludge. Nitrogen and phosphorous solubilization from sewage sludge was assessed by measuring, respectively, the concentration of Total Kjeldahl Nitrogen, ammonia, nitrate/nitrite, and soluble and total phosphorous before and after the bioleaching assays. At the end of the experiment, after 4 days of incubation (final pH of 1.4), the following metal solubilization yields were obtained: zinc, 91%; nickel, 87%; copper, 79%; lead, 52%; and chromium, 42%. As a result of sludge acidification, the viable counts of selected indicator bacteria were decreased to below the detection limit (4 × 103 cfu 100 ml-1), followed by an increase in the mineral fraction of nitrogen (from 6 to 10%) and in the soluble fraction of phosphorous (from 15 to 30%). Although some loss of sludge nutrients can occur during solid-liquid separation following bioleaching, its beneficial effects as metal removal and reduction of pathogenic bacteria are sufficient to consider the potential of this treatment before sludge disposal onto agricultural fields.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
This paper is the result of real-scale physical modeling study designed to simulate the load-deformation characteristics of railroad foundation systems that include the railroad ties, the ballast, and the sub-base layers of a railroad embankment. The study presents comparisons of the application of dynamic loads of 100kN on the rails, and the resulting deformations during a 500,000 cycle testing period for three rail support systems; wood, concrete and steel. The results show that the deformation curve has an exponential shape, with the larger portion of the deformation occurring during the first 50,000 load cycles followed by a tendency to stabilize between 100,000 to 500,000 cycles. These results indicate that the critical phase of deformations of a new railroad is within the first 50,000 cycles of loading, and after that, it slowly attenuates as it approaches a stable value. The paper also presents empirically derived formulations for the estimation of the deformations of the rail supports as a result of rail traffic.
Resumo:
The tractor is one of the machines that more traffics over the soil during the processes involving agricultural production. The interaction tractor/soil is made by the tires which, in most of the cases, are pneumatic. The tire type and the tractor travel speed, interfere directly on the pressure over the soil. One of the techniques employed to evaluate the alterations that tractor traffic causes in the soil is to measure its Cone Index. The aim of this research was to evaluate the same Cone Index alterations caused by an agricultural tractor equipped with both radial tires and bias ply tires, trafficking mobilized soil in four different travel speeds. The experiment was performed in a LATOSSOLO VERMELHO, located 22°51' S, 48°25'W and 770 m of altitude, in Botucatu-SP, Brazil. The soil mobilization was performed with a chisel plow and a disc arrow. The traction was accomplished with a John Deere tractor, model 6600, with 88 kW of power and 6,723 kg. Equipment requiring a force of 25kN was traced by the tractor draw bar. The experimental design was in randomized blocks with 4 × 2 factorial arrangements, with two distinct treatments corresponding to the types of tires (bias and radial) and the four travel speeds, with six replications. There were selected the following speeds: 3.5, 3.9, 5.1 and 5.9 km h-1. To determine the soil resistance, there was utilized MSSU - Mobile Soil Sampling Unit, with which the Cone Index was obtained in layers from 0-100, 100-200, 200-300, 300-400, 400-500 and over 500 mm deep. The Cone Index where evaluated in areas with non contact between tire and soil (ICn) and in the tire footprint track (ICp). There were calculated the Cone Index increments caused by the tractor tire (AIC) and the results showed that as the tractor travel speed increased, there were observed decrements in the medium values of cone index. The radial tire provided smaller values of the Cone Index in the superficial layer of the soil (0 to 100 mm) in relation to the bias ply tire, when the speed was approximately 6 km h-1. The increment in the Cone Index, promoted by the tractor, was more intense in the first 200 mm depth, but it also reached the layer from 200 to 300 mm.
Resumo:
The pressure caused by agricultural machinery traffic many result in soil compactation in no-tillage system. The aim of this work was to evaluate no-tillage system onset,time on some physical properties, index S and organic matter (OM) of an oxysol located in Jaboticabal, Sao Paulo State, Brazil. The experiment had completely randomized split-splot design. The treatments consisted of four no-tillage systems: no-tillage for 2 years, no-tillage for 4 years, no-tillage for 6 years and one natural wooded area. The evaluated layers were: Q-0.10m, 0.10-0.20m and 0.20-030m. The following were determined: soil porosity, soil aggregates, bulk density, index S and organic matter. The results were submitted to variance analysis and when there was a difference between averages, Tukey's test was used to compare them. The natural wooded area showed higher organic matter, macroporosity, hydraulic conductivity and Index S. There was no difference between the studied parameters, showing that the no-tillage system for six years was not enough to change the soil physical property.
Resumo:
This project aims to apply image processing techniques in computer vision featuring an omnidirectional vision system to agricultural mobile robots (AMR) used for trajectory navigation problems, as well as localization matters. To carry through this task, computational methods based on the JSEG algorithm were used to provide the classification and the characterization of such problems, together with Artificial Neural Networks (ANN) for pattern recognition. Therefore, it was possible to run simulations and carry out analyses of the performance of JSEG image segmentation technique through Matlab/Octave platforms, along with the application of customized Back-propagation algorithm and statistical methods in a Simulink environment. Having the aforementioned procedures been done, it was practicable to classify and also characterize the HSV space color segments, not to mention allow the recognition of patterns in which reasonably accurate results were obtained.
ANN statistical image recognition method for computer vision in agricultural mobile robot navigation
Resumo:
The main application area in this project, is to deploy image processing and segmentation techniques in computer vision through an omnidirectional vision system to agricultural mobile robots (AMR) used for trajectory navigation problems, as well as localization matters. Thereby, computational methods based on the JSEG algorithm were used to provide the classification and the characterization of such problems, together with Artificial Neural Networks (ANN) for image recognition. Hence, it was possible to run simulations and carry out analyses of the performance of JSEG image segmentation technique through Matlab/Octave computational platforms, along with the application of customized Back-propagation Multilayer Perceptron (MLP) algorithm and statistical methods as structured heuristics methods in a Simulink environment. Having the aforementioned procedures been done, it was practicable to classify and also characterize the HSV space color segments, not to mention allow the recognition of segmented images in which reasonably accurate results were obtained. © 2010 IEEE.